The ANSS event ID is ld2006022500 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ld2006022500/executive.
2006/02/25 01:39:22 45.627 -75.200 10.6 3.96 Quebec, Canada
USGS/SLU Moment Tensor Solution ENS 2006/02/25 01:39:22:0 45.63 -75.20 10.6 4.0 Quebec, Canada Stations used: CN.ALFO CN.GAC CN.MNT CN.OTT Filtering commands used: cut o DIST/3.3 -10 o DIST/3.3 +10 rtr taper w 0.1 hp c 0.12 n 3 lp c 0.50 n 3 Best Fitting Double Couple Mo = 3.51e+21 dyne-cm Mw = 3.63 Z = 18 km Plane Strike Dip Rake NP1 332 45 95 NP2 145 45 85 Principal Axes: Axis Value Plunge Azimuth T 3.51e+21 86 327 N 0.00e+00 4 149 P -3.51e+21 0 59 Moment Tensor: (dyne-cm) Component Value Mxx -9.46e+20 Mxy -1.57e+21 Mxz 1.77e+20 Myy -2.55e+21 Myz -1.24e+20 Mzz 3.49e+21 -------------- #######--------------- -#############-------------- --################------------ ---###################----------- ----#####################--------- P -----######################-------- ------#######################----------- ------########################---------- --------########### ##########---------- --------########### T ###########--------- ---------########## ###########--------- ----------########################-------- ----------#######################------- -----------######################------- -----------#####################------ ------------###################----- -------------#################---- --------------#############--- ----------------#########--- ---------------------# -------------- Global CMT Convention Moment Tensor: R T P 3.49e+21 1.77e+20 1.24e+20 1.77e+20 -9.46e+20 1.57e+21 1.24e+20 1.57e+21 -2.55e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20060225013922/index.html |
STK = 145 DIP = 45 RAKE = 85 MW = 3.63 HS = 18.0
The NDK file is 20060225013922.ndk The waveform inversion is preferred.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -10 o DIST/3.3 +10 rtr taper w 0.1 hp c 0.12 n 3 lp c 0.50 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 230 65 45 3.30 0.4607 WVFGRD96 2.0 220 70 40 3.25 0.4490 WVFGRD96 3.0 235 60 75 3.31 0.4162 WVFGRD96 4.0 240 55 85 3.37 0.3818 WVFGRD96 5.0 225 35 -100 3.39 0.3695 WVFGRD96 6.0 250 35 -65 3.41 0.3557 WVFGRD96 7.0 260 35 -45 3.42 0.3573 WVFGRD96 8.0 85 35 -55 3.47 0.3885 WVFGRD96 9.0 65 35 -80 3.50 0.3750 WVFGRD96 10.0 65 30 -80 3.54 0.3928 WVFGRD96 11.0 150 55 90 3.56 0.4270 WVFGRD96 12.0 150 45 80 3.57 0.4406 WVFGRD96 13.0 150 50 80 3.59 0.4841 WVFGRD96 14.0 145 50 75 3.60 0.5114 WVFGRD96 15.0 145 50 85 3.61 0.5162 WVFGRD96 16.0 145 50 80 3.62 0.5429 WVFGRD96 17.0 330 40 90 3.62 0.5117 WVFGRD96 18.0 145 45 85 3.63 0.5455 WVFGRD96 19.0 145 45 80 3.61 0.5056 WVFGRD96 20.0 140 45 85 3.63 0.4929 WVFGRD96 21.0 145 45 90 3.64 0.4881 WVFGRD96 22.0 135 40 60 3.63 0.4729 WVFGRD96 23.0 155 35 15 3.73 0.4700 WVFGRD96 24.0 150 30 10 3.75 0.4501 WVFGRD96 25.0 155 30 15 3.74 0.4852 WVFGRD96 26.0 155 30 15 3.74 0.4920 WVFGRD96 27.0 150 30 10 3.75 0.4855 WVFGRD96 28.0 150 35 10 3.75 0.4706 WVFGRD96 29.0 150 40 10 3.74 0.4442
The best solution is
WVFGRD96 18.0 145 45 85 3.63 0.5455
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -10 o DIST/3.3 +10 rtr taper w 0.1 hp c 0.12 n 3 lp c 0.50 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00