Location

Location ANSS

The ANSS event ID is uw10609208 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/uw10609208/executive.

2004/07/12 16:45:00 44.334 -124.489 28.8 4.9 Oregon

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2004/07/12 16:45:00:0  44.33 -124.49  28.8 4.9 Oregon
 
 Stations used:
   BK.HOPS BK.HUMO BK.JCC BK.MOD BK.ORV BK.YBH UO.EUO UO.PIN 
   US.HAWA US.WVOR 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 1.27e+23 dyne-cm
  Mw = 4.67 
  Z  = 15 km
  Plane   Strike  Dip  Rake
   NP1      186    71    97
   NP2      345    20    70
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.27e+23     63     107
    N   0.00e+00      7       4
    P  -1.27e+23     26     271

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.30e+21
       Mxy    -6.33e+21
       Mxz    -1.58e+22
       Myy    -7.92e+22
       Myz     9.91e+22
       Mzz     7.69e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 -----------######-----              
              -------------##########-----           
             -------------#############----          
           ---------------##############-----        
          ---------------#################----       
         ----------------##################----      
        ----------------####################----     
        ----------------####################----     
       ----   ----------#####################----    
       ---- P ---------######################----    
       ----   ---------##########   #########----    
       ----------------########## T #########----    
        ---------------##########   #########---     
        ---------------#####################----     
         --------------#####################---      
          -------------####################---       
           ------------###################---        
             -----------#################--          
              ----------###############---           
                 -------#############--              
                     ----##########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  7.69e+22  -1.58e+22  -9.91e+22 
 -1.58e+22   2.30e+21   6.33e+21 
 -9.91e+22   6.33e+21  -7.92e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20040712164500/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 345
      DIP = 20
     RAKE = 70
       MW = 4.67
       HS = 15.0

The NDK file is 20040712164500.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
GCMT
UCB
 USGS/SLU Moment Tensor Solution
 ENS  2004/07/12 16:45:00:0  44.33 -124.49  28.8 4.9 Oregon
 
 Stations used:
   BK.HOPS BK.HUMO BK.JCC BK.MOD BK.ORV BK.YBH UO.EUO UO.PIN 
   US.HAWA US.WVOR 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 1.27e+23 dyne-cm
  Mw = 4.67 
  Z  = 15 km
  Plane   Strike  Dip  Rake
   NP1      186    71    97
   NP2      345    20    70
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.27e+23     63     107
    N   0.00e+00      7       4
    P  -1.27e+23     26     271

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.30e+21
       Mxy    -6.33e+21
       Mxz    -1.58e+22
       Myy    -7.92e+22
       Myz     9.91e+22
       Mzz     7.69e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 -----------######-----              
              -------------##########-----           
             -------------#############----          
           ---------------##############-----        
          ---------------#################----       
         ----------------##################----      
        ----------------####################----     
        ----------------####################----     
       ----   ----------#####################----    
       ---- P ---------######################----    
       ----   ---------##########   #########----    
       ----------------########## T #########----    
        ---------------##########   #########---     
        ---------------#####################----     
         --------------#####################---      
          -------------####################---       
           ------------###################---        
             -----------#################--          
              ----------###############---           
                 -------#############--              
                     ----##########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  7.69e+22  -1.58e+22  -9.91e+22 
 -1.58e+22   2.30e+21   6.33e+21 
 -9.91e+22   6.33e+21  -7.92e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20040712164500/index.html
	
071204B  NEAR COAST OF OREGON

  Date: 2004/ 7/12   Centroid Time: 16:45: 3.7 GMT
  Lat=  44.30  Lon=-124.71
  Depth= 20.0   Half duration= 0.7
  Centroid time minus hypocenter time:  3.0
  Moment Tensor: Expo=23  1.960 0.051 -2.010 0.254 -1.650 -0.397 
  Mw = 4.9    mb = 4.9    Ms = 4.1   Scalar Moment = 2.62e+23
  Fault plane:  strike=23    dip=27   slip=112
  Fault plane:  strike=178    dip=65   slip=79


                     -----#########
                 --------#############-
              ----------################--
             -----------#################--
           ------------###################---
          -------------####################---
         -------------#####################----
        --------------######################----
        --   ---------###########   ########----
       --- P ---------########### T ########-----
       ---   ---------###########   ########-----
       ---------------######################-----
       ---------------#####################------
        --------------#####################-----
        --------------####################------
         --------------##################------
          -------------#################------
           -------------##############-------
             -----------#############------
              -----------#########--------
                 ---------#####--------
                     ######--------


        
ofor04194   0  07/12/2004 16:45:00.0 44.332 -124.520    4.9 29.1 7121645
            2    191   58         100  353     34    74        8   0.0 2.15e23 4.8 3
           -2 0.02 0.05 OT01 OT04 OT06 OT08 HUMO YBH (uw7121645)

STK 191
DIP  59
RAKE 100 

Mo=2.15E+23 dyne-cm
Mw=4.8
H=8



                     --------#-----
                 -----------#####------
              -------------########-------
             ------------############------
           -------------##############-------
          -------------################-------
         -------------##################-------
        --------------###################-------
        -------------####################-------
       -   ----------#####################-------
       - P ---------######################-------
       -   ---------##########   #########-------
       -------------########## T #########-------
        ------------##########   #########------
        ------------######################------
         -----------#####################------
          ----------#####################-----
           ---------####################-----
             --------##################----
              -------################-----
                 -----#############----
                     --##########--


        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5    20    45   -95   4.19 0.2135
WVFGRD96    1.0    20    45   -95   4.25 0.2047
WVFGRD96    2.0    20    45   -95   4.38 0.2428
WVFGRD96    3.0   225    20   -60   4.41 0.1521
WVFGRD96    4.0   255    10   -30   4.41 0.2057
WVFGRD96    5.0   270    10   -15   4.42 0.2631
WVFGRD96    6.0   280    10     0   4.43 0.3137
WVFGRD96    7.0   295    10    15   4.44 0.3539
WVFGRD96    8.0   305    10    25   4.54 0.3837
WVFGRD96    9.0   325    15    45   4.56 0.4206
WVFGRD96   10.0   340    20    60   4.59 0.4543
WVFGRD96   11.0   345    20    65   4.61 0.4854
WVFGRD96   12.0   350    20    75   4.63 0.5079
WVFGRD96   13.0   350    25    70   4.65 0.5242
WVFGRD96   14.0   350    20    75   4.66 0.5322
WVFGRD96   15.0   345    20    70   4.67 0.5344
WVFGRD96   16.0   345    20    65   4.68 0.5328
WVFGRD96   17.0   345    20    65   4.69 0.5261
WVFGRD96   18.0   340    15    60   4.69 0.5162
WVFGRD96   19.0   340    15    60   4.71 0.5062
WVFGRD96   20.0   340    15    60   4.72 0.4943
WVFGRD96   21.0   335    15    55   4.74 0.4818
WVFGRD96   22.0   325    15    45   4.75 0.4670
WVFGRD96   23.0   335    10    55   4.75 0.4525
WVFGRD96   24.0   330    10    50   4.76 0.4371
WVFGRD96   25.0   330    10    50   4.77 0.4203
WVFGRD96   26.0   330    10    50   4.78 0.4021
WVFGRD96   27.0   330    10    50   4.79 0.3824
WVFGRD96   28.0   325    10    45   4.79 0.3608
WVFGRD96   29.0   325    10    45   4.80 0.3374

The best solution is

WVFGRD96   15.0   345    20    70   4.67 0.5344

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Tue Apr 16 12:46:50 PM CDT 2024