The ANSS event ID is usp000b5kb and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/usp000b5kb/executive.
2002/06/05 20:17:36 52.890 -74.410 18.0 4.5 Quebec, Canada
USGS/SLU Moment Tensor Solution ENS 2002/06/05 20:17:36:0 52.89 -74.41 18.0 4.5 Quebec, Canada Stations used: CN.A11 CN.A21 CN.A64 CN.ICQ CN.KAPO CN.SCHQ CN.VLDQ Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 4.17e+21 dyne-cm Mw = 3.68 Z = 3 km Plane Strike Dip Rake NP1 149 47 75 NP2 350 45 105 Principal Axes: Axis Value Plunge Azimuth T 4.17e+21 79 345 N 0.00e+00 11 159 P -4.17e+21 1 249 Moment Tensor: (dyne-cm) Component Value Mxx -3.82e+20 Mxy -1.41e+21 Mxz 7.51e+20 Myy -3.64e+21 Myz -1.32e+20 Mzz 4.03e+21 ######-------- #############--------- --################---------- ---##################--------- ----####################---------- -----#####################---------- ------######################---------- -------#######################---------- -------########### #########---------- --------########### T ##########---------- ---------########## ##########---------- ----------######################---------- ----------######################---------- --------#####################--------- P ---------####################--------- -----------##################-------- ------------################-------- -------------##############------- -------------###########------ ---------------#######------ ---------------------- ------------## Global CMT Convention Moment Tensor: R T P 4.03e+21 7.51e+20 1.32e+20 7.51e+20 -3.82e+20 1.41e+21 1.32e+20 1.41e+21 -3.64e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20020605201736/index.html |
STK = 350 DIP = 45 RAKE = 105 MW = 3.68 HS = 3.0
The NDK file is 20020605201736.ndk The waveform inversion is preferred.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 275 70 -5 3.54 0.5130 WVFGRD96 1.0 280 65 10 3.56 0.5325 WVFGRD96 2.0 280 70 20 3.61 0.5653 WVFGRD96 3.0 350 45 105 3.68 0.5685 WVFGRD96 4.0 100 70 25 3.66 0.5396 WVFGRD96 5.0 270 60 -25 3.67 0.5299 WVFGRD96 6.0 270 60 -20 3.67 0.5374 WVFGRD96 7.0 270 60 -20 3.67 0.5411 WVFGRD96 8.0 270 60 -20 3.67 0.5413 WVFGRD96 9.0 270 60 -20 3.67 0.5390 WVFGRD96 10.0 270 60 -20 3.69 0.5365 WVFGRD96 11.0 270 60 -20 3.69 0.5303 WVFGRD96 12.0 270 60 -25 3.70 0.5319 WVFGRD96 13.0 270 60 -25 3.70 0.5335 WVFGRD96 14.0 270 60 -25 3.71 0.5334 WVFGRD96 15.0 270 60 -25 3.72 0.5316 WVFGRD96 16.0 270 60 -25 3.72 0.5293 WVFGRD96 17.0 270 60 -25 3.73 0.5266 WVFGRD96 18.0 280 60 -35 3.71 0.5243 WVFGRD96 19.0 280 60 -35 3.72 0.5220 WVFGRD96 20.0 270 55 -30 3.76 0.5144 WVFGRD96 21.0 280 55 -40 3.74 0.5101 WVFGRD96 22.0 280 55 -40 3.75 0.5050 WVFGRD96 23.0 280 60 -45 3.75 0.4998 WVFGRD96 24.0 280 60 -45 3.76 0.4935 WVFGRD96 25.0 280 55 -40 3.77 0.4866 WVFGRD96 26.0 280 55 -40 3.78 0.4793 WVFGRD96 27.0 270 50 -35 3.81 0.4716 WVFGRD96 28.0 270 50 -35 3.81 0.4639 WVFGRD96 29.0 270 50 -35 3.82 0.4561
The best solution is
WVFGRD96 3.0 350 45 105 3.68 0.5685
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00