Location

Location ANSS

The ANSS event ID is uw10530748 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/uw10530748/executive.

2001/02/28 18:54:33 47.149 -122.727 51.8 6.8 Washington

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2001/02/28 18:54:33:0  47.15 -122.73  51.8 6.8 Washington
 
 Stations used:
   BK.CMB CI.MLAC CI.TIN CN.LLLB IU.COR US.AHID US.BW06 US.DUG 
   US.HAWA US.HLID US.NEW US.OCWA US.WVOR UW.ERW UW.LTY UW.SQM 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.11e+26 dyne-cm
  Mw = 6.63 
  Z  = 52 km
  Plane   Strike  Dip  Rake
   NP1       17    70   -105
   NP2      235    25   -55
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.11e+26     23     119
    N   0.00e+00     14      23
    P  -1.11e+26     62     264

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.14e+25
       Mxy    -4.19e+25
       Mxz    -1.48e+25
       Myy     4.82e+25
       Myz     8.07e+25
       Mzz    -6.96e+25
                                                     
                                                     
                                                     
                                                     
                     #############-                  
                 ##################----              
              ##########-----------####---           
             #######---------------#######-          
           #######-----------------##########        
          ######-------------------###########       
         #####---------------------############      
        #####----------------------#############     
        ####----------------------##############     
       ####-----------------------###############    
       ###---------   ------------###############    
       ###--------- P -----------################    
       ###---------   -----------################    
        ##----------------------################     
        ##---------------------##########   ####     
         #--------------------########### T ###      
          -------------------############   ##       
           -----------------#################        
             --------------################          
              ------------################           
                 -------###############              
                     -#############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -6.96e+25  -1.48e+25  -8.07e+25 
 -1.48e+25   2.14e+25   4.19e+25 
 -8.07e+25   4.19e+25   4.82e+25 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20010228185433/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 235
      DIP = 25
     RAKE = -55
       MW = 6.63
       HS = 52.0

The NDK file is 20010228185433.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
GCMT
 USGS/SLU Moment Tensor Solution
 ENS  2001/02/28 18:54:33:0  47.15 -122.73  51.8 6.8 Washington
 
 Stations used:
   BK.CMB CI.MLAC CI.TIN CN.LLLB IU.COR US.AHID US.BW06 US.DUG 
   US.HAWA US.HLID US.NEW US.OCWA US.WVOR UW.ERW UW.LTY UW.SQM 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.11e+26 dyne-cm
  Mw = 6.63 
  Z  = 52 km
  Plane   Strike  Dip  Rake
   NP1       17    70   -105
   NP2      235    25   -55
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.11e+26     23     119
    N   0.00e+00     14      23
    P  -1.11e+26     62     264

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.14e+25
       Mxy    -4.19e+25
       Mxz    -1.48e+25
       Myy     4.82e+25
       Myz     8.07e+25
       Mzz    -6.96e+25
                                                     
                                                     
                                                     
                                                     
                     #############-                  
                 ##################----              
              ##########-----------####---           
             #######---------------#######-          
           #######-----------------##########        
          ######-------------------###########       
         #####---------------------############      
        #####----------------------#############     
        ####----------------------##############     
       ####-----------------------###############    
       ###---------   ------------###############    
       ###--------- P -----------################    
       ###---------   -----------################    
        ##----------------------################     
        ##---------------------##########   ####     
         #--------------------########### T ###      
          -------------------############   ##       
           -----------------#################        
             --------------################          
              ------------################           
                 -------###############              
                     -#############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -6.96e+25  -1.48e+25  -8.07e+25 
 -1.48e+25   2.14e+25   4.19e+25 
 -8.07e+25   4.19e+25   4.82e+25 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20010228185433/index.html
	
 Global CMT

 Best Fitting Double Couple
    Mo = 1.78e+26 dyne-cm
    Mw = 6.80
    Z  = 48 km
     Plane   Strike  Dip  Rake
      NP1        2    73   -88
      NP2      176    17   -96
 Principal Axes:
   Axis    Value   Plunge  Azimuth
     T   1.78e+26     28      91
     N   0.00e+00      2     182
     P  -1.78e+26     62     275



 Moment Tensor: (dyne-cm)
    Component  Value
       Mxx    -2.75e+23
       Mxy     1.50e+24
       Mxz    -7.50e+24
       Myy     9.92e+25
       Myz     1.48e+26
       Mzz    -9.89e+25




                     ##------######
                 ##-----------#########
              ###--------------###########
             ##----------------############
           ###------------------#############
          ###-------------------##############
         ###--------------------###############
        ###---------------------################
        ###---------------------################
       ####--------   ----------#################
       ####-------- P ----------##########   ####
       ####--------   ----------########## T ####
       ####---------------------##########   ####
        ###---------------------################
        ####--------------------################
         ###-------------------################
          ###------------------###############
           ###-----------------##############
             ###--------------#############
              ####------------############
                 ###---------##########
                     ###----#######




 Harvard Convention
 Moment Tensor:
      R          T          F
 -9.89e+25  -7.50e+24  -1.48e+26
 -7.50e+24  -2.75e+23  -1.50e+24
 -1.48e+26  -1.50e+24   9.92e+25
                                                                         
---------------------
Event name: 022801L

Region name: WASHINGTON
Date (y/m/d): 2001/2/28

Information on data used in inversion

Wave    nsta  nrec  cutoff
Body      68   178   45
Mantle    66   161   135
Surface    0     0   0

Timing and location information

         hr  min   sec       lat     lon    depth   mb   Ms
PDE      18   54  32.80     47.15  -122.73   51.9  6.5  6.6
CMT      18   54  37.30     47.14  -122.53   46.8
Error              0.10      0.01     0.01    0.3
Assumed half duration:  6.1


Mechanism information

Exponent for moment tensor:  26    units: dyne-cm
         Mrr     Mtt     Mpp     Mrt     Mrp     Mtp
CMT    -0.960  -0.054   1.013  -0.060  -1.453  -0.019
Error   0.006   0.004   0.005   0.009   0.013   0.004

Mw = 6.8   Scalar Moment = 1.76e+26
Fault plane:  strike=176    dip=17   slip=-96
Fault plane:  strike=2    dip=73   slip=-88
Eigenvector:  eigenvalue:  1.78   plunge: 28   azimuth:  90
Eigenvector:  eigenvalue: -0.05   plunge:  2   azimuth: 181
Eigenvector:  eigenvalue: -1.73   plunge: 62   azimuth: 275

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.06 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0    25    45    90   5.98 0.3031
WVFGRD96    4.0    30    45    90   6.09 0.2841
WVFGRD96    6.0   150    80     5   6.13 0.2325
WVFGRD96    8.0   150    75     0   6.18 0.2175
WVFGRD96   10.0   315    25    20   6.04 0.2315
WVFGRD96   12.0   310    25    15   6.06 0.2732
WVFGRD96   14.0   305    25    10   6.08 0.3108
WVFGRD96   16.0   305    25    10   6.10 0.3452
WVFGRD96   18.0   305    25    10   6.13 0.3771
WVFGRD96   20.0   295    20     0   6.15 0.4065
WVFGRD96   22.0   295    20     0   6.18 0.4341
WVFGRD96   24.0   290    20    -5   6.21 0.4606
WVFGRD96   26.0   290    20    -5   6.23 0.4847
WVFGRD96   28.0   285    15   -10   6.25 0.5061
WVFGRD96   30.0   285    15   -10   6.27 0.5245
WVFGRD96   32.0   280    15   -15   6.29 0.5394
WVFGRD96   34.0   280    15   -15   6.31 0.5511
WVFGRD96   36.0   270    15   -20   6.34 0.5603
WVFGRD96   38.0   265    20   -25   6.35 0.5683
WVFGRD96   40.0   260    15   -30   6.50 0.5701
WVFGRD96   42.0   250    20   -40   6.52 0.5825
WVFGRD96   44.0   250    25   -40   6.55 0.5969
WVFGRD96   46.0   245    25   -45   6.57 0.6110
WVFGRD96   48.0   240    25   -50   6.59 0.6215
WVFGRD96   50.0   235    25   -55   6.61 0.6276
WVFGRD96   52.0   235    25   -55   6.63 0.6289
WVFGRD96   54.0   230    25   -60   6.64 0.6260
WVFGRD96   56.0   230    25   -60   6.66 0.6185
WVFGRD96   58.0   230    25   -65   6.65 0.6083
WVFGRD96   60.0   235    25   -60   6.66 0.5959
WVFGRD96   62.0   235    25   -60   6.67 0.5804
WVFGRD96   64.0   240    25   -55   6.68 0.5625
WVFGRD96   66.0   225    20   -70   6.67 0.5461
WVFGRD96   68.0   230    20   -65   6.68 0.5286

The best solution is

WVFGRD96   52.0   235    25   -55   6.63 0.6289

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Tue Apr 9 12:10:30 PM CDT 2024