The ANSS event ID is uw10474303 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/uw10474303/executive.
1999/07/03 01:43:54 47.074 -123.464 40.0 5.8 Washington
USGS/SLU Moment Tensor Solution
ENS 1999/07/03 01:43:54:0 47.07 -123.46 40.0 5.8 Washington
Stations used:
BK.CMB US.AHID US.ELK US.HAWA US.MNV US.NEW US.WVOR UU.CTU
UU.HVU UU.NOQ UW.LON UW.LTY
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.07 n 3
Best Fitting Double Couple
Mo = 4.47e+24 dyne-cm
Mw = 5.70
Z = 44 km
Plane Strike Dip Rake
NP1 165 50 -95
NP2 353 40 -84
Principal Axes:
Axis Value Plunge Azimuth
T 4.47e+24 5 259
N 0.00e+00 4 168
P -4.47e+24 84 40
Moment Tensor: (dyne-cm)
Component Value
Mxx 1.44e+23
Mxy 8.37e+23
Mxz -4.42e+23
Myy 4.24e+24
Myz -6.82e+23
Mzz -4.38e+24
#------#######
####----------########
######--------------########
######----------------########
#######-------------------########
########--------------------########
########---------------------#########
#########----------------------#########
#########------------ --------########
##########------------ P --------#########
###########----------- --------#########
###########----------------------#########
########----------------------#########
T #########---------------------########
##########--------------------########
###########--------------------#######
###########------------------#######
############---------------#######
###########-------------######
############----------######
###########------#####
##############
Global CMT Convention Moment Tensor:
R T P
-4.38e+24 -4.42e+23 6.82e+23
-4.42e+23 1.44e+23 -8.37e+23
6.82e+23 -8.37e+23 4.24e+24
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/19990703014354/index.html
|
STK = 165
DIP = 50
RAKE = -95
MW = 5.70
HS = 44.0
The NDK file is 19990703014354.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 1999/07/03 01:43:54:0 47.07 -123.46 40.0 5.8 Washington
Stations used:
BK.CMB US.AHID US.ELK US.HAWA US.MNV US.NEW US.WVOR UU.CTU
UU.HVU UU.NOQ UW.LON UW.LTY
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.07 n 3
Best Fitting Double Couple
Mo = 4.47e+24 dyne-cm
Mw = 5.70
Z = 44 km
Plane Strike Dip Rake
NP1 165 50 -95
NP2 353 40 -84
Principal Axes:
Axis Value Plunge Azimuth
T 4.47e+24 5 259
N 0.00e+00 4 168
P -4.47e+24 84 40
Moment Tensor: (dyne-cm)
Component Value
Mxx 1.44e+23
Mxy 8.37e+23
Mxz -4.42e+23
Myy 4.24e+24
Myz -6.82e+23
Mzz -4.38e+24
#------#######
####----------########
######--------------########
######----------------########
#######-------------------########
########--------------------########
########---------------------#########
#########----------------------#########
#########------------ --------########
##########------------ P --------#########
###########----------- --------#########
###########----------------------#########
########----------------------#########
T #########---------------------########
##########--------------------########
###########--------------------#######
###########------------------#######
############---------------#######
###########-------------######
############----------######
###########------#####
##############
Global CMT Convention Moment Tensor:
R T P
-4.38e+24 -4.42e+23 6.82e+23
-4.42e+23 1.44e+23 -8.37e+23
6.82e+23 -8.37e+23 4.24e+24
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/19990703014354/index.html
|
Global CMT
Best Fitting Double Couple
Mo = 5.62e+24 dyne-cm
Mw = 5.80
Z = 45 km
Plane Strike Dip Rake
NP1 345 61 -108
NP2 199 34 -61
Principal Axes:
Axis Value Plunge Azimuth
T 5.62e+24 14 88
N 0.00e+00 16 354
P -5.62e+24 69 218
Moment Tensor: (dyne-cm)
Component Value
Mxx -4.55e+23
Mxy -2.02e+23
Mxz 1.54e+24
Myy 5.02e+24
Myz 2.48e+24
Mzz -4.56e+24
###--------###
######################
#########-----##############
########---------#############
########------------##############
########--------------##############
########----------------##############
########------------------##############
#######-------------------##############
#######---------------------########## #
#######---------------------########## T #
#######----------------------######### #
#######--------- ----------#############
######--------- P ----------############
######--------- ----------############
#####----------------------###########
#####---------------------##########
####---------------------#########
###--------------------#######
###------------------#######
##----------------####
-------------#
Harvard Convention
Moment Tensor:
R T F
-4.56e+24 1.54e+24 -2.48e+24
1.54e+24 -4.55e+23 2.02e+23
-2.48e+24 2.02e+23 5.02e+24
|
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 170 50 90 4.97 0.2900
WVFGRD96 2.0 345 40 85 5.07 0.3573
WVFGRD96 3.0 -5 40 85 5.17 0.4205
WVFGRD96 4.0 340 45 60 5.21 0.4050
WVFGRD96 5.0 325 60 25 5.21 0.3687
WVFGRD96 6.0 320 75 5 5.24 0.3529
WVFGRD96 7.0 320 80 -5 5.27 0.3407
WVFGRD96 8.0 320 90 -25 5.30 0.3337
WVFGRD96 9.0 315 80 -20 5.28 0.3199
WVFGRD96 10.0 315 80 -25 5.29 0.3082
WVFGRD96 11.0 125 65 -40 5.27 0.3048
WVFGRD96 12.0 115 45 -25 5.22 0.3218
WVFGRD96 13.0 115 45 -25 5.24 0.3384
WVFGRD96 14.0 105 40 -20 5.21 0.3541
WVFGRD96 15.0 105 40 -20 5.22 0.3693
WVFGRD96 16.0 100 35 -10 5.21 0.3836
WVFGRD96 17.0 100 35 -5 5.23 0.3972
WVFGRD96 18.0 100 35 -5 5.24 0.4099
WVFGRD96 19.0 55 60 35 5.39 0.4286
WVFGRD96 20.0 55 60 35 5.40 0.4454
WVFGRD96 21.0 55 55 30 5.44 0.4620
WVFGRD96 22.0 55 55 35 5.45 0.4780
WVFGRD96 23.0 55 55 35 5.46 0.4933
WVFGRD96 24.0 55 55 35 5.48 0.5079
WVFGRD96 25.0 55 55 35 5.49 0.5217
WVFGRD96 26.0 55 55 35 5.50 0.5346
WVFGRD96 27.0 60 55 45 5.51 0.5474
WVFGRD96 28.0 355 50 -70 5.42 0.5609
WVFGRD96 29.0 0 50 -65 5.44 0.5846
WVFGRD96 30.0 -5 45 -70 5.45 0.6084
WVFGRD96 31.0 -5 45 -70 5.46 0.6307
WVFGRD96 32.0 0 45 -65 5.48 0.6502
WVFGRD96 33.0 0 45 -70 5.48 0.6660
WVFGRD96 34.0 355 45 -75 5.49 0.6798
WVFGRD96 35.0 355 45 -75 5.51 0.6899
WVFGRD96 36.0 340 45 -90 5.52 0.6980
WVFGRD96 37.0 345 40 -80 5.54 0.7054
WVFGRD96 38.0 345 40 -80 5.56 0.7134
WVFGRD96 39.0 345 40 -80 5.58 0.7218
WVFGRD96 40.0 355 40 -80 5.66 0.7036
WVFGRD96 41.0 355 40 -80 5.67 0.7181
WVFGRD96 42.0 350 40 -85 5.68 0.7277
WVFGRD96 43.0 350 40 -85 5.69 0.7326
WVFGRD96 44.0 165 50 -95 5.70 0.7339
WVFGRD96 45.0 165 50 -95 5.71 0.7319
WVFGRD96 46.0 170 50 -85 5.72 0.7292
WVFGRD96 47.0 170 50 -85 5.72 0.7248
WVFGRD96 48.0 345 40 -95 5.73 0.7179
WVFGRD96 49.0 340 40 -100 5.73 0.7108
WVFGRD96 50.0 170 50 -85 5.74 0.7021
WVFGRD96 51.0 160 55 -100 5.75 0.6928
WVFGRD96 52.0 160 55 -95 5.75 0.6840
WVFGRD96 53.0 160 55 -95 5.76 0.6742
WVFGRD96 54.0 160 55 -95 5.76 0.6629
WVFGRD96 55.0 165 55 -90 5.76 0.6519
WVFGRD96 56.0 345 35 -90 5.77 0.6402
WVFGRD96 57.0 345 35 -90 5.77 0.6277
WVFGRD96 58.0 340 35 -95 5.77 0.6144
WVFGRD96 59.0 340 35 -100 5.77 0.6018
The best solution is
WVFGRD96 44.0 165 50 -95 5.70 0.7339
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00