The ANSS event ID is uw10474303 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/uw10474303/executive.
1999/07/03 01:43:54 47.074 -123.464 40.0 5.8 Washington
USGS/SLU Moment Tensor Solution ENS 1999/07/03 01:43:54:0 47.07 -123.46 40.0 5.8 Washington Stations used: BK.CMB US.AHID US.ELK US.HAWA US.MNV US.NEW US.WVOR UU.CTU UU.HVU UU.NOQ UW.LON UW.LTY Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 4.47e+24 dyne-cm Mw = 5.70 Z = 44 km Plane Strike Dip Rake NP1 165 50 -95 NP2 353 40 -84 Principal Axes: Axis Value Plunge Azimuth T 4.47e+24 5 259 N 0.00e+00 4 168 P -4.47e+24 84 40 Moment Tensor: (dyne-cm) Component Value Mxx 1.44e+23 Mxy 8.37e+23 Mxz -4.42e+23 Myy 4.24e+24 Myz -6.82e+23 Mzz -4.38e+24 #------####### ####----------######## ######--------------######## ######----------------######## #######-------------------######## ########--------------------######## ########---------------------######### #########----------------------######### #########------------ --------######## ##########------------ P --------######### ###########----------- --------######### ###########----------------------######### ########----------------------######### T #########---------------------######## ##########--------------------######## ###########--------------------####### ###########------------------####### ############---------------####### ###########-------------###### ############----------###### ###########------##### ############## Global CMT Convention Moment Tensor: R T P -4.38e+24 -4.42e+23 6.82e+23 -4.42e+23 1.44e+23 -8.37e+23 6.82e+23 -8.37e+23 4.24e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/19990703014354/index.html |
STK = 165 DIP = 50 RAKE = -95 MW = 5.70 HS = 44.0
The NDK file is 19990703014354.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 1999/07/03 01:43:54:0 47.07 -123.46 40.0 5.8 Washington Stations used: BK.CMB US.AHID US.ELK US.HAWA US.MNV US.NEW US.WVOR UU.CTU UU.HVU UU.NOQ UW.LON UW.LTY Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 4.47e+24 dyne-cm Mw = 5.70 Z = 44 km Plane Strike Dip Rake NP1 165 50 -95 NP2 353 40 -84 Principal Axes: Axis Value Plunge Azimuth T 4.47e+24 5 259 N 0.00e+00 4 168 P -4.47e+24 84 40 Moment Tensor: (dyne-cm) Component Value Mxx 1.44e+23 Mxy 8.37e+23 Mxz -4.42e+23 Myy 4.24e+24 Myz -6.82e+23 Mzz -4.38e+24 #------####### ####----------######## ######--------------######## ######----------------######## #######-------------------######## ########--------------------######## ########---------------------######### #########----------------------######### #########------------ --------######## ##########------------ P --------######### ###########----------- --------######### ###########----------------------######### ########----------------------######### T #########---------------------######## ##########--------------------######## ###########--------------------####### ###########------------------####### ############---------------####### ###########-------------###### ############----------###### ###########------##### ############## Global CMT Convention Moment Tensor: R T P -4.38e+24 -4.42e+23 6.82e+23 -4.42e+23 1.44e+23 -8.37e+23 6.82e+23 -8.37e+23 4.24e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/19990703014354/index.html |
Global CMT Best Fitting Double Couple Mo = 5.62e+24 dyne-cm Mw = 5.80 Z = 45 km Plane Strike Dip Rake NP1 345 61 -108 NP2 199 34 -61 Principal Axes: Axis Value Plunge Azimuth T 5.62e+24 14 88 N 0.00e+00 16 354 P -5.62e+24 69 218 Moment Tensor: (dyne-cm) Component Value Mxx -4.55e+23 Mxy -2.02e+23 Mxz 1.54e+24 Myy 5.02e+24 Myz 2.48e+24 Mzz -4.56e+24 ###--------### ###################### #########-----############## ########---------############# ########------------############## ########--------------############## ########----------------############## ########------------------############## #######-------------------############## #######---------------------########## # #######---------------------########## T # #######----------------------######### # #######--------- ----------############# ######--------- P ----------############ ######--------- ----------############ #####----------------------########### #####---------------------########## ####---------------------######### ###--------------------####### ###------------------####### ##----------------#### -------------# Harvard Convention Moment Tensor: R T F -4.56e+24 1.54e+24 -2.48e+24 1.54e+24 -4.55e+23 2.02e+23 -2.48e+24 2.02e+23 5.02e+24 |
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 170 50 90 4.97 0.2900 WVFGRD96 2.0 345 40 85 5.07 0.3573 WVFGRD96 3.0 -5 40 85 5.17 0.4205 WVFGRD96 4.0 340 45 60 5.21 0.4050 WVFGRD96 5.0 325 60 25 5.21 0.3687 WVFGRD96 6.0 320 75 5 5.24 0.3529 WVFGRD96 7.0 320 80 -5 5.27 0.3407 WVFGRD96 8.0 320 90 -25 5.30 0.3337 WVFGRD96 9.0 315 80 -20 5.28 0.3199 WVFGRD96 10.0 315 80 -25 5.29 0.3082 WVFGRD96 11.0 125 65 -40 5.27 0.3048 WVFGRD96 12.0 115 45 -25 5.22 0.3218 WVFGRD96 13.0 115 45 -25 5.24 0.3384 WVFGRD96 14.0 105 40 -20 5.21 0.3541 WVFGRD96 15.0 105 40 -20 5.22 0.3693 WVFGRD96 16.0 100 35 -10 5.21 0.3836 WVFGRD96 17.0 100 35 -5 5.23 0.3972 WVFGRD96 18.0 100 35 -5 5.24 0.4099 WVFGRD96 19.0 55 60 35 5.39 0.4286 WVFGRD96 20.0 55 60 35 5.40 0.4454 WVFGRD96 21.0 55 55 30 5.44 0.4620 WVFGRD96 22.0 55 55 35 5.45 0.4780 WVFGRD96 23.0 55 55 35 5.46 0.4933 WVFGRD96 24.0 55 55 35 5.48 0.5079 WVFGRD96 25.0 55 55 35 5.49 0.5217 WVFGRD96 26.0 55 55 35 5.50 0.5346 WVFGRD96 27.0 60 55 45 5.51 0.5474 WVFGRD96 28.0 355 50 -70 5.42 0.5609 WVFGRD96 29.0 0 50 -65 5.44 0.5846 WVFGRD96 30.0 -5 45 -70 5.45 0.6084 WVFGRD96 31.0 -5 45 -70 5.46 0.6307 WVFGRD96 32.0 0 45 -65 5.48 0.6502 WVFGRD96 33.0 0 45 -70 5.48 0.6660 WVFGRD96 34.0 355 45 -75 5.49 0.6798 WVFGRD96 35.0 355 45 -75 5.51 0.6899 WVFGRD96 36.0 340 45 -90 5.52 0.6980 WVFGRD96 37.0 345 40 -80 5.54 0.7054 WVFGRD96 38.0 345 40 -80 5.56 0.7134 WVFGRD96 39.0 345 40 -80 5.58 0.7218 WVFGRD96 40.0 355 40 -80 5.66 0.7036 WVFGRD96 41.0 355 40 -80 5.67 0.7181 WVFGRD96 42.0 350 40 -85 5.68 0.7277 WVFGRD96 43.0 350 40 -85 5.69 0.7326 WVFGRD96 44.0 165 50 -95 5.70 0.7339 WVFGRD96 45.0 165 50 -95 5.71 0.7319 WVFGRD96 46.0 170 50 -85 5.72 0.7292 WVFGRD96 47.0 170 50 -85 5.72 0.7248 WVFGRD96 48.0 345 40 -95 5.73 0.7179 WVFGRD96 49.0 340 40 -100 5.73 0.7108 WVFGRD96 50.0 170 50 -85 5.74 0.7021 WVFGRD96 51.0 160 55 -100 5.75 0.6928 WVFGRD96 52.0 160 55 -95 5.75 0.6840 WVFGRD96 53.0 160 55 -95 5.76 0.6742 WVFGRD96 54.0 160 55 -95 5.76 0.6629 WVFGRD96 55.0 165 55 -90 5.76 0.6519 WVFGRD96 56.0 345 35 -90 5.77 0.6402 WVFGRD96 57.0 345 35 -90 5.77 0.6277 WVFGRD96 58.0 340 35 -95 5.77 0.6144 WVFGRD96 59.0 340 35 -100 5.77 0.6018
The best solution is
WVFGRD96 44.0 165 50 -95 5.70 0.7339
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00