Location

Location ANSS

2023/03/19 15:06:27 59.610 -151.907 65.4 5.4 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2023/03/19 15:06:27:0  59.61 -151.91  65.4 5.4 Alaska
 
 Stations used:
   AK.BRLK AK.CAPN AK.DIV AK.FIRE AK.GHO AK.KLU AK.KNK AK.L20K 
   AK.N19K AK.O18K AK.O19K AK.PWL AK.Q19K AK.RC01 AK.SAW 
   AK.SLK AK.SWD AT.PMR AV.ACH AV.PLK3 AV.RED AV.STLK II.KDAK 
 
 Filtering commands used:
   cut o DIST/3.4 -40 o DIST/3.4 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.53e+24 dyne-cm
  Mw = 5.39 
  Z  = 70 km
  Plane   Strike  Dip  Rake
   NP1       45    75    40
   NP2      303    52   161
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.53e+24     38     271
    N   0.00e+00     48      62
    P  -1.53e+24     15     169

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.38e+24
       Mxy     2.46e+23
       Mxz     3.88e+23
       Myy     8.87e+23
       Myz    -8.17e+23
       Mzz     4.92e+23
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             -----------------------------#          
           --###########------------------###        
          ####################-----------#####       
         ########################-------#######      
        ############################--##########     
        #############################-##########     
       #######   ###################----#########    
       ####### T #################-------########    
       #######   ###############----------#######    
       ########################------------######    
        #####################---------------####     
        ###################------------------###     
         ###############---------------------##      
          ############-----------------------#       
           ########--------------------------        
             ###---------------------------          
              ----------------   ---------           
                 ------------- P ------              
                     ---------   --                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  4.92e+23   3.88e+23   8.17e+23 
  3.88e+23  -1.38e+24  -2.46e+23 
  8.17e+23  -2.46e+23   8.87e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230319150627/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 45
      DIP = 75
     RAKE = 40
       MW = 5.39
       HS = 70.0

The NDK file is 20230319150627.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2023/03/19 15:06:27:0  59.61 -151.91  65.4 5.4 Alaska
 
 Stations used:
   AK.BRLK AK.CAPN AK.DIV AK.FIRE AK.GHO AK.KLU AK.KNK AK.L20K 
   AK.N19K AK.O18K AK.O19K AK.PWL AK.Q19K AK.RC01 AK.SAW 
   AK.SLK AK.SWD AT.PMR AV.ACH AV.PLK3 AV.RED AV.STLK II.KDAK 
 
 Filtering commands used:
   cut o DIST/3.4 -40 o DIST/3.4 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.53e+24 dyne-cm
  Mw = 5.39 
  Z  = 70 km
  Plane   Strike  Dip  Rake
   NP1       45    75    40
   NP2      303    52   161
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.53e+24     38     271
    N   0.00e+00     48      62
    P  -1.53e+24     15     169

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.38e+24
       Mxy     2.46e+23
       Mxz     3.88e+23
       Myy     8.87e+23
       Myz    -8.17e+23
       Mzz     4.92e+23
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             -----------------------------#          
           --###########------------------###        
          ####################-----------#####       
         ########################-------#######      
        ############################--##########     
        #############################-##########     
       #######   ###################----#########    
       ####### T #################-------########    
       #######   ###############----------#######    
       ########################------------######    
        #####################---------------####     
        ###################------------------###     
         ###############---------------------##      
          ############-----------------------#       
           ########--------------------------        
             ###---------------------------          
              ----------------   ---------           
                 ------------- P ------              
                     ---------   --                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  4.92e+23   3.88e+23   8.17e+23 
  3.88e+23  -1.38e+24  -2.46e+23 
  8.17e+23  -2.46e+23   8.87e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230319150627/index.html
	

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.4 -40 o DIST/3.4 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.06 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   120    45   -35   4.63 0.1950
WVFGRD96    4.0   135    75    20   4.62 0.2099
WVFGRD96    6.0   135    70    20   4.67 0.2254
WVFGRD96    8.0    35    65   -30   4.75 0.2446
WVFGRD96   10.0    35    65   -25   4.77 0.2594
WVFGRD96   12.0    35    65   -25   4.80 0.2684
WVFGRD96   14.0    40    75   -25   4.82 0.2766
WVFGRD96   16.0    40    75   -25   4.85 0.2850
WVFGRD96   18.0    40    75   -20   4.87 0.2925
WVFGRD96   20.0    40    75   -20   4.89 0.2996
WVFGRD96   22.0    40    75   -20   4.91 0.3056
WVFGRD96   24.0   220    75   -10   4.93 0.3112
WVFGRD96   26.0   220    75   -10   4.95 0.3169
WVFGRD96   28.0   225    80    15   4.97 0.3243
WVFGRD96   30.0    40    75   -15   5.00 0.3296
WVFGRD96   32.0    40    75   -10   5.02 0.3358
WVFGRD96   34.0   220    80   -10   5.04 0.3400
WVFGRD96   36.0    40    80    15   5.08 0.3506
WVFGRD96   38.0    40    85    15   5.11 0.3621
WVFGRD96   40.0    45    70    30   5.18 0.3803
WVFGRD96   42.0    45    75    30   5.20 0.3940
WVFGRD96   44.0    45    70    30   5.23 0.4070
WVFGRD96   46.0    45    70    30   5.25 0.4197
WVFGRD96   48.0    45    75    30   5.26 0.4315
WVFGRD96   50.0    45    75    35   5.29 0.4427
WVFGRD96   52.0    45    75    35   5.30 0.4541
WVFGRD96   54.0    45    75    35   5.32 0.4650
WVFGRD96   56.0    45    75    35   5.33 0.4746
WVFGRD96   58.0    45    75    35   5.34 0.4826
WVFGRD96   60.0    45    75    35   5.35 0.4894
WVFGRD96   62.0    45    75    35   5.36 0.4947
WVFGRD96   64.0    45    75    35   5.36 0.4990
WVFGRD96   66.0    45    75    35   5.37 0.5027
WVFGRD96   68.0    45    75    35   5.38 0.5044
WVFGRD96   70.0    45    75    40   5.39 0.5054
WVFGRD96   72.0    45    75    35   5.38 0.5053
WVFGRD96   74.0    45    75    35   5.39 0.5039
WVFGRD96   76.0    45    75    35   5.39 0.5023
WVFGRD96   78.0    45    75    35   5.39 0.5000
WVFGRD96   80.0    45    75    35   5.39 0.4967
WVFGRD96   82.0    45    75    35   5.39 0.4934
WVFGRD96   84.0    45    75    35   5.39 0.4895
WVFGRD96   86.0    45    75    35   5.40 0.4860
WVFGRD96   88.0    45    75    35   5.40 0.4819
WVFGRD96   90.0    45    75    30   5.39 0.4773
WVFGRD96   92.0    45    75    30   5.39 0.4734
WVFGRD96   94.0    45    75    30   5.39 0.4696
WVFGRD96   96.0    45    80    30   5.39 0.4663
WVFGRD96   98.0    45    80    30   5.39 0.4623

The best solution is

WVFGRD96   70.0    45    75    40   5.39 0.5054

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.4 -40 o DIST/3.4 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is based on the last trace plotted. It is not used to represent travel time or absolute time, but rather to indicate the number of seconds plotted. If there is not a trace directly above the scale, then a default, meaningless scale is plotted.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Sun Mar 19 11:07:13 CDT 2023