Location

Location ANSS

2022/08/11 07:17:16 31.684 -104.425 6.6 4.5 Texas

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2022/08/11 07:17:16:0  31.68 -104.43   6.6 4.5 Texas
 
 Stations used:
   4O.MID02 GM.NMP25 GM.NMP41 GM.NMP44 GM.NMP45 GM.NMP53 
   IM.TX31 IU.ANMO N4.MSTX SC.121A SC.Y22A TX.ALPN TX.APMT 
   TX.DKNS TX.MB01 TX.MB04 TX.MB09 TX.MNHN TX.ODSA TX.PB01 
   TX.PB05 TX.PB11 TX.PB21 TX.PECS TX.SAND TX.SGCY TX.SN07 
   TX.SN08 TX.VHRN US.MNTX 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 1.97e+22 dyne-cm
  Mw = 4.13 
  Z  = 8 km
  Plane   Strike  Dip  Rake
   NP1      100    55   -95
   NP2      289    35   -83
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.97e+22     10     194
    N   0.00e+00      4     103
    P  -1.97e+22     79     351

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.74e+22
       Mxy     4.48e+21
       Mxz    -6.79e+21
       Myy     1.04e+21
       Myz    -1.96e+20
       Mzz    -1.85e+22
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              ############################           
             ########-------###############          
           ####-------------------###########        
          ##--------------------------########       
         #------------------------------#######      
        ----------------------------------######     
        ------------------   ---------------####     
       #------------------ P ----------------####    
       ##-----------------   -----------------###    
       ####------------------------------------##    
       ######----------------------------------##    
        #######--------------------------------#     
        ###########-------------------------####     
         ################---------------#######      
          ####################################       
           ##################################        
             ##############################          
              ########   #################           
                 ##### T ##############              
                     #   ##########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.85e+22  -6.79e+21   1.96e+20 
 -6.79e+21   1.74e+22  -4.48e+21 
  1.96e+20  -4.48e+21   1.04e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20220811071716/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 100
      DIP = 55
     RAKE = -95
       MW = 4.13
       HS = 8.0

The NDK file is 20220811071716.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2022/08/11 07:17:16:0  31.68 -104.43   6.6 4.5 Texas
 
 Stations used:
   4O.MID02 GM.NMP25 GM.NMP41 GM.NMP44 GM.NMP45 GM.NMP53 
   IM.TX31 IU.ANMO N4.MSTX SC.121A SC.Y22A TX.ALPN TX.APMT 
   TX.DKNS TX.MB01 TX.MB04 TX.MB09 TX.MNHN TX.ODSA TX.PB01 
   TX.PB05 TX.PB11 TX.PB21 TX.PECS TX.SAND TX.SGCY TX.SN07 
   TX.SN08 TX.VHRN US.MNTX 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 1.97e+22 dyne-cm
  Mw = 4.13 
  Z  = 8 km
  Plane   Strike  Dip  Rake
   NP1      100    55   -95
   NP2      289    35   -83
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.97e+22     10     194
    N   0.00e+00      4     103
    P  -1.97e+22     79     351

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.74e+22
       Mxy     4.48e+21
       Mxz    -6.79e+21
       Myy     1.04e+21
       Myz    -1.96e+20
       Mzz    -1.85e+22
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              ############################           
             ########-------###############          
           ####-------------------###########        
          ##--------------------------########       
         #------------------------------#######      
        ----------------------------------######     
        ------------------   ---------------####     
       #------------------ P ----------------####    
       ##-----------------   -----------------###    
       ####------------------------------------##    
       ######----------------------------------##    
        #######--------------------------------#     
        ###########-------------------------####     
         ################---------------#######      
          ####################################       
           ##################################        
             ##############################          
              ########   #################           
                 ##### T ##############              
                     #   ##########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.85e+22  -6.79e+21   1.96e+20 
 -6.79e+21   1.74e+22  -4.48e+21 
  1.96e+20  -4.48e+21   1.04e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20220811071716/index.html
	
Regional Moment Tensor (Mwr)
Moment 2.115e+15 N-m
Magnitude 4.15 Mwr
Depth 8.0 km
Percent DC 91%
Half Duration -
Catalog US
Data Source US 2
Contributor US 2

Nodal Planes
Plane Strike Dip Rake
NP1 283 32 -94
NP2 108 58 -88

Principal Axes
Axis Value Plunge Azimuth
T 2.067e+15 N-m 13 196
N 0.094e+15 N-m 2 286
P -2.161e+15 N-m 77 25

        

Magnitudes

mLg Magnitude


(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   160    80   -30   3.70 0.2695
WVFGRD96    2.0   145    65   -45   3.86 0.3406
WVFGRD96    3.0   155    85    65   3.97 0.4065
WVFGRD96    4.0   155    80    60   3.96 0.4596
WVFGRD96    5.0   110    55   -80   4.03 0.5054
WVFGRD96    6.0   285    35   -85   4.05 0.5449
WVFGRD96    7.0   290    40   -80   4.07 0.5645
WVFGRD96    8.0   100    55   -95   4.13 0.5840
WVFGRD96    9.0   105    50   -90   4.14 0.5801
WVFGRD96   10.0   105    50   -90   4.13 0.5591
WVFGRD96   11.0   115    50   -75   4.12 0.5300
WVFGRD96   12.0   140    65   -40   4.08 0.5050
WVFGRD96   13.0   140    65   -40   4.09 0.4866
WVFGRD96   14.0   145    70   -35   4.09 0.4689
WVFGRD96   15.0   335    80    25   4.10 0.4549
WVFGRD96   16.0   335    80    25   4.10 0.4419
WVFGRD96   17.0   335    80    25   4.11 0.4290
WVFGRD96   18.0   335    80    25   4.12 0.4169
WVFGRD96   19.0   335    80    25   4.12 0.4050
WVFGRD96   20.0   335    80    30   4.12 0.3933
WVFGRD96   21.0   335    80    30   4.13 0.3824
WVFGRD96   22.0   335    80    30   4.14 0.3716
WVFGRD96   23.0   335    80    30   4.14 0.3610
WVFGRD96   24.0   335    80    30   4.15 0.3502
WVFGRD96   25.0   335    80    30   4.15 0.3400
WVFGRD96   26.0   330    80    30   4.15 0.3303
WVFGRD96   27.0   330    85    30   4.16 0.3214
WVFGRD96   28.0   330    85    30   4.16 0.3129
WVFGRD96   29.0   150    70   -20   4.18 0.3038

The best solution is

WVFGRD96    8.0   100    55   -95   4.13 0.5840

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Thu Aug 11 06:01:22 CDT 2022