USGS/SLU Moment Tensor Solution ENS 2021/12/28 01:55:43:0 32.29 -101.79 7.8 4.5 Texas Stations used: GM.NMP02 GM.NMP25 GM.NMP41 GM.NMP44 GM.NMP45 IM.TX31 N4.MSTX N4.WHTX N4.Z35B O2.SC11 O2.SC15 TX.ALPN TX.APMT TX.BRDY TX.DKNS TX.DRIO TX.HNDO TX.MB01 TX.MB04 TX.MB05 TX.MB06 TX.MNHN TX.ODSA TX.OZNA TX.PB01 TX.PB05 TX.PB11 TX.PB17 TX.PB28 TX.PECS TX.PH02 TX.PLPT TX.POST TX.SAND TX.SGCY TX.SMWD TX.SN07 TX.SN08 TX.WTFS US.AMTX US.JCT US.MNTX US.WMOK Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 2.43e+22 dyne-cm Mw = 4.19 Z = 8 km Plane Strike Dip Rake NP1 95 80 -25 NP2 190 65 -169 Principal Axes: Axis Value Plunge Azimuth T 2.43e+22 10 144 N 0.00e+00 63 255 P -2.43e+22 25 50 Moment Tensor: (dyne-cm) Component Value Mxx 7.24e+21 Mxy -2.10e+22 Mxz -9.27e+21 Myy -3.73e+21 Myz -4.64e+21 Mzz -3.51e+21 #########----- ############---------- #############--------------- #############----------------- ##############-------------- --- ##############--------------- P ---- ###############--------------- ----- ###############------------------------- ###############------------------------- ###############--------------------------- ---############--------------------------- ---------######--------------------------- --------------##########-----------####### -------------########################### -------------########################### ------------########################## -----------######################### -----------####################### ---------############### ### --------############### T ## ------############## ---########### Global CMT Convention Moment Tensor: R T P -3.51e+21 -9.27e+21 4.64e+21 -9.27e+21 7.24e+21 2.10e+22 4.64e+21 2.10e+22 -3.73e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20211228015543/index.html |
STK = 95 DIP = 80 RAKE = -25 MW = 4.19 HS = 8.0
The NDK file is 20211228015543.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2021/12/28 01:55:43:0 32.29 -101.79 7.8 4.5 Texas Stations used: GM.NMP02 GM.NMP25 GM.NMP41 GM.NMP44 GM.NMP45 IM.TX31 N4.MSTX N4.WHTX N4.Z35B O2.SC11 O2.SC15 TX.ALPN TX.APMT TX.BRDY TX.DKNS TX.DRIO TX.HNDO TX.MB01 TX.MB04 TX.MB05 TX.MB06 TX.MNHN TX.ODSA TX.OZNA TX.PB01 TX.PB05 TX.PB11 TX.PB17 TX.PB28 TX.PECS TX.PH02 TX.PLPT TX.POST TX.SAND TX.SGCY TX.SMWD TX.SN07 TX.SN08 TX.WTFS US.AMTX US.JCT US.MNTX US.WMOK Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 2.43e+22 dyne-cm Mw = 4.19 Z = 8 km Plane Strike Dip Rake NP1 95 80 -25 NP2 190 65 -169 Principal Axes: Axis Value Plunge Azimuth T 2.43e+22 10 144 N 0.00e+00 63 255 P -2.43e+22 25 50 Moment Tensor: (dyne-cm) Component Value Mxx 7.24e+21 Mxy -2.10e+22 Mxz -9.27e+21 Myy -3.73e+21 Myz -4.64e+21 Mzz -3.51e+21 #########----- ############---------- #############--------------- #############----------------- ##############-------------- --- ##############--------------- P ---- ###############--------------- ----- ###############------------------------- ###############------------------------- ###############--------------------------- ---############--------------------------- ---------######--------------------------- --------------##########-----------####### -------------########################### -------------########################### ------------########################## -----------######################### -----------####################### ---------############### ### --------############### T ## ------############## ---########### Global CMT Convention Moment Tensor: R T P -3.51e+21 -9.27e+21 4.64e+21 -9.27e+21 7.24e+21 2.10e+22 4.64e+21 2.10e+22 -3.73e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20211228015543/index.html |
Regional Moment Tensor (Mwr) Moment 3.036e+15 N-m Magnitude 4.25 Mwr Depth 4.0 km Percent DC 97% Half Duration - Catalog US Data Source US 2 Contributor US 2 Nodal Planes Plane Strike Dip Rake NP1 94° 74° -24° NP2 191° 67° -163° Principal Axes Axis Value Plunge Azimuth T 3.063e+15 N-m 5° 144° N -0.054e+15 N-m 61° 243° P -3.009e+15 N-m 28° 51° |
(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 275 85 10 3.82 0.4024 WVFGRD96 2.0 275 90 15 3.95 0.5210 WVFGRD96 3.0 95 85 -30 4.03 0.5799 WVFGRD96 4.0 90 75 -30 4.08 0.6288 WVFGRD96 5.0 95 80 -25 4.10 0.6622 WVFGRD96 6.0 95 80 -25 4.12 0.6839 WVFGRD96 7.0 95 80 -20 4.15 0.6981 WVFGRD96 8.0 95 80 -25 4.19 0.7057 WVFGRD96 9.0 95 80 -20 4.20 0.7041 WVFGRD96 10.0 95 80 -20 4.22 0.6959 WVFGRD96 11.0 275 90 20 4.23 0.6775 WVFGRD96 12.0 95 85 -15 4.24 0.6687 WVFGRD96 13.0 275 90 15 4.25 0.6492 WVFGRD96 14.0 95 85 -15 4.26 0.6358 WVFGRD96 15.0 95 85 -15 4.27 0.6177 WVFGRD96 16.0 95 85 -15 4.27 0.5999 WVFGRD96 17.0 95 85 -15 4.28 0.5824 WVFGRD96 18.0 95 85 -15 4.29 0.5648 WVFGRD96 19.0 95 85 -15 4.29 0.5476 WVFGRD96 20.0 95 85 -15 4.30 0.5302 WVFGRD96 21.0 95 85 -15 4.30 0.5121 WVFGRD96 22.0 95 85 -15 4.31 0.4958 WVFGRD96 23.0 95 85 -20 4.31 0.4798 WVFGRD96 24.0 95 85 -20 4.31 0.4658 WVFGRD96 25.0 100 90 -20 4.32 0.4528 WVFGRD96 26.0 100 90 -20 4.32 0.4406 WVFGRD96 27.0 280 85 20 4.32 0.4308 WVFGRD96 28.0 280 80 20 4.33 0.4216 WVFGRD96 29.0 280 80 20 4.33 0.4125
The best solution is
WVFGRD96 8.0 95 80 -25 4.19 0.7057
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: