USGS/SLU Moment Tensor Solution ENS 2021/12/17 12:13:51:0 48.90 -123.35 17.3 3.6 B. C., Canada Stations used: CN.CLRS CN.GHNB CN.HOPB CN.MGRB CN.NLLB CN.OZB CN.PABB CN.PGC CN.PTRF CN.QEPB CN.SYMB CN.TXDB CN.VDEB CN.VGZ CN.WPB CN.WSLR UW.BERY UW.BHAM UW.DONK UW.GNW UW.GUEM UW.HILL UW.HOPR UW.LUMI UW.MULN UW.NATEM UW.OLGA UW.PRIN UW.RNWY UW.SAXON UW.SHUK UW.SLDQ UW.WYNO Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 3.39e+21 dyne-cm Mw = 3.62 Z = 19 km Plane Strike Dip Rake NP1 60 65 40 NP2 310 54 149 Principal Axes: Axis Value Plunge Azimuth T 3.39e+21 45 280 N 0.00e+00 44 87 P -3.39e+21 6 183 Moment Tensor: (dyne-cm) Component Value Mxx -3.29e+21 Mxy -4.54e+20 Mxz 6.64e+20 Myy 1.62e+21 Myz -1.65e+21 Mzz 1.67e+21 -------------- ---------------------- ---------------------------- -#####------------------------ ###############------------------- ###################----------------- #######################-------------## ##########################----------#### ######## #################-------##### ######### T ###################---######## ######### ####################-######### ###############################--######### ############################-------####### #########################---------###### #####################--------------##### ################------------------#### #########-------------------------## ---------------------------------# ------------------------------ ---------------------------- -------- ----------- ---- P ------- Global CMT Convention Moment Tensor: R T P 1.67e+21 6.64e+20 1.65e+21 6.64e+20 -3.29e+21 4.54e+20 1.65e+21 4.54e+20 1.62e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20211217121351/index.html |
STK = 60 DIP = 65 RAKE = 40 MW = 3.62 HS = 19.0
The NDK file is 20211217121351.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2021/12/17 12:13:51:0 48.90 -123.35 17.3 3.6 B. C., Canada Stations used: CN.CLRS CN.GHNB CN.HOPB CN.MGRB CN.NLLB CN.OZB CN.PABB CN.PGC CN.PTRF CN.QEPB CN.SYMB CN.TXDB CN.VDEB CN.VGZ CN.WPB CN.WSLR UW.BERY UW.BHAM UW.DONK UW.GNW UW.GUEM UW.HILL UW.HOPR UW.LUMI UW.MULN UW.NATEM UW.OLGA UW.PRIN UW.RNWY UW.SAXON UW.SHUK UW.SLDQ UW.WYNO Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 3.39e+21 dyne-cm Mw = 3.62 Z = 19 km Plane Strike Dip Rake NP1 60 65 40 NP2 310 54 149 Principal Axes: Axis Value Plunge Azimuth T 3.39e+21 45 280 N 0.00e+00 44 87 P -3.39e+21 6 183 Moment Tensor: (dyne-cm) Component Value Mxx -3.29e+21 Mxy -4.54e+20 Mxz 6.64e+20 Myy 1.62e+21 Myz -1.65e+21 Mzz 1.67e+21 -------------- ---------------------- ---------------------------- -#####------------------------ ###############------------------- ###################----------------- #######################-------------## ##########################----------#### ######## #################-------##### ######### T ###################---######## ######### ####################-######### ###############################--######### ############################-------####### #########################---------###### #####################--------------##### ################------------------#### #########-------------------------## ---------------------------------# ------------------------------ ---------------------------- -------- ----------- ---- P ------- Global CMT Convention Moment Tensor: R T P 1.67e+21 6.64e+20 1.65e+21 6.64e+20 -3.29e+21 4.54e+20 1.65e+21 4.54e+20 1.62e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20211217121351/index.html |
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 185 45 90 3.14 0.2236 WVFGRD96 2.0 180 45 85 3.28 0.3021 WVFGRD96 3.0 330 70 15 3.26 0.2861 WVFGRD96 4.0 325 55 0 3.30 0.2858 WVFGRD96 5.0 60 70 40 3.34 0.3022 WVFGRD96 6.0 60 75 40 3.37 0.3381 WVFGRD96 7.0 55 80 40 3.38 0.3741 WVFGRD96 8.0 55 80 45 3.45 0.4085 WVFGRD96 9.0 55 80 45 3.47 0.4403 WVFGRD96 10.0 60 65 40 3.50 0.4711 WVFGRD96 11.0 60 65 40 3.52 0.5007 WVFGRD96 12.0 60 65 40 3.54 0.5251 WVFGRD96 13.0 60 65 40 3.55 0.5449 WVFGRD96 14.0 60 65 40 3.57 0.5604 WVFGRD96 15.0 60 65 40 3.58 0.5722 WVFGRD96 16.0 60 65 40 3.59 0.5807 WVFGRD96 17.0 60 65 40 3.60 0.5862 WVFGRD96 18.0 60 65 40 3.61 0.5894 WVFGRD96 19.0 60 65 40 3.62 0.5907 WVFGRD96 20.0 60 65 40 3.63 0.5902 WVFGRD96 21.0 60 65 40 3.64 0.5887 WVFGRD96 22.0 60 65 40 3.65 0.5857 WVFGRD96 23.0 60 65 40 3.65 0.5810 WVFGRD96 24.0 60 65 40 3.66 0.5747 WVFGRD96 25.0 60 65 40 3.67 0.5675 WVFGRD96 26.0 60 65 40 3.67 0.5593 WVFGRD96 27.0 60 65 40 3.68 0.5498 WVFGRD96 28.0 60 65 40 3.68 0.5393 WVFGRD96 29.0 60 60 40 3.69 0.5281
The best solution is
WVFGRD96 19.0 60 65 40 3.62 0.5907
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: