USGS/SLU Moment Tensor Solution ENS 2021/12/15 09:58:21:0 38.68 -97.44 3.0 4.0 Kansas Stations used: GS.KS28 GS.OK038 GS.OK051 GS.OK052 N4.BGNE N4.L34B N4.N38B N4.P38B N4.R32B N4.S39B N4.T35B N4.TUL3 N4.U38B O2.ALVA O2.CALT O2.CHAN O2.CRES O2.DOVR O2.DRIP O2.DUST O2.ERNS O2.FREE O2.FW06 O2.GORE O2.KS01 O2.MRSH O2.PERK O2.PERY O2.PW05 O2.PW09 O2.PW18 O2.SC16 O2.SC17 O2.SC19 O2.SC20 O2.SMNL O2.STIG OK.BLOK OK.CHOK OK.CROK OK.FNO OK.HTCH OK.NOKA OK.W35A US.CBKS US.KSU1 Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 1.10e+22 dyne-cm Mw = 3.96 Z = 3 km Plane Strike Dip Rake NP1 295 90 5 NP2 205 85 180 Principal Axes: Axis Value Plunge Azimuth T 1.10e+22 4 160 N 0.00e+00 85 295 P -1.10e+22 4 70 Moment Tensor: (dyne-cm) Component Value Mxx 8.37e+21 Mxy -7.02e+21 Mxz -8.66e+20 Myy -8.37e+21 Myz -4.04e+20 Mzz -8.35e+13 ############## ###################--- #####################------- #####################--------- ######################------------ ######################-------------- -#####################-------------- ------################--------------- P ----------###########---------------- ---------------######--------------------- -------------------#---------------------- -------------------####------------------- ------------------#########--------------- -----------------#############---------- ----------------##################------ --------------#######################- ------------######################## ----------######################## --------###################### ------###################### ---############# ### ############ T Global CMT Convention Moment Tensor: R T P -8.35e+13 -8.66e+20 4.04e+20 -8.66e+20 8.37e+21 7.02e+21 4.04e+20 7.02e+21 -8.37e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20211215095821/index.html |
STK = 295 DIP = 90 RAKE = 5 MW = 3.96 HS = 3.0
The NDK file is 20211215095821.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2021/12/15 09:58:21:0 38.68 -97.44 3.0 4.0 Kansas Stations used: GS.KS28 GS.OK038 GS.OK051 GS.OK052 N4.BGNE N4.L34B N4.N38B N4.P38B N4.R32B N4.S39B N4.T35B N4.TUL3 N4.U38B O2.ALVA O2.CALT O2.CHAN O2.CRES O2.DOVR O2.DRIP O2.DUST O2.ERNS O2.FREE O2.FW06 O2.GORE O2.KS01 O2.MRSH O2.PERK O2.PERY O2.PW05 O2.PW09 O2.PW18 O2.SC16 O2.SC17 O2.SC19 O2.SC20 O2.SMNL O2.STIG OK.BLOK OK.CHOK OK.CROK OK.FNO OK.HTCH OK.NOKA OK.W35A US.CBKS US.KSU1 Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 1.10e+22 dyne-cm Mw = 3.96 Z = 3 km Plane Strike Dip Rake NP1 295 90 5 NP2 205 85 180 Principal Axes: Axis Value Plunge Azimuth T 1.10e+22 4 160 N 0.00e+00 85 295 P -1.10e+22 4 70 Moment Tensor: (dyne-cm) Component Value Mxx 8.37e+21 Mxy -7.02e+21 Mxz -8.66e+20 Myy -8.37e+21 Myz -4.04e+20 Mzz -8.35e+13 ############## ###################--- #####################------- #####################--------- ######################------------ ######################-------------- -#####################-------------- ------################--------------- P ----------###########---------------- ---------------######--------------------- -------------------#---------------------- -------------------####------------------- ------------------#########--------------- -----------------#############---------- ----------------##################------ --------------#######################- ------------######################## ----------######################## --------###################### ------###################### ---############# ### ############ T Global CMT Convention Moment Tensor: R T P -8.35e+13 -8.66e+20 4.04e+20 -8.66e+20 8.37e+21 7.02e+21 4.04e+20 7.02e+21 -8.37e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20211215095821/index.html |
Regional Moment Tensor (Mwr) Moment 1.449e+15 N-m Magnitude 4.04 Mwr Depth 3.0 km Percent DC 90% Half Duration - Catalog US Data Source US 1 Contributor US 1 Nodal Planes Plane Strike Dip Rake NP1 208° 72° -156° NP2 110° 68° -20° Principal Axes Axis Value Plunge Azimuth T 1.409e+15 N-m 3° 338° N 0.076e+15 N-m 60° 243° P -1.485e+15 N-m 29° 69° |
(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 115 90 -5 3.84 0.5925 WVFGRD96 2.0 115 85 -10 3.91 0.6625 WVFGRD96 3.0 295 90 5 3.96 0.6890 WVFGRD96 4.0 295 90 10 3.99 0.6868 WVFGRD96 5.0 295 90 15 4.01 0.6661 WVFGRD96 6.0 115 65 5 4.04 0.6402 WVFGRD96 7.0 115 65 5 4.05 0.6211 WVFGRD96 8.0 115 65 5 4.06 0.6024 WVFGRD96 9.0 295 90 15 4.05 0.5824 WVFGRD96 10.0 295 70 5 4.07 0.5653 WVFGRD96 11.0 295 90 15 4.07 0.5476 WVFGRD96 12.0 295 90 15 4.07 0.5319 WVFGRD96 13.0 295 90 15 4.08 0.5171 WVFGRD96 14.0 295 90 15 4.08 0.5028 WVFGRD96 15.0 295 90 15 4.09 0.4893 WVFGRD96 16.0 295 90 15 4.09 0.4763 WVFGRD96 17.0 295 90 15 4.10 0.4640 WVFGRD96 18.0 295 70 0 4.11 0.4520 WVFGRD96 19.0 295 70 5 4.12 0.4421
The best solution is
WVFGRD96 3.0 295 90 5 3.96 0.6890
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.
The GSKAN.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 20 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 0.7000 3.7762 2.1823 2.2792 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 0.7000 3.7810 2.1854 2.2818 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 1.0000 5.3466 3.0853 2.5688 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 1.0000 5.8307 3.3645 2.6648 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 7.0000 6.1587 3.5538 2.7469 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.3056 3.6456 2.7933 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.6013 3.8129 2.8766 0.00 0.00 0.00 0.00 1.00 1.00 0.0000 8.0871 4.6640 3.3410 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: