USGS/SLU Moment Tensor Solution ENS 2021/12/06 13:45:29:0 56.60 -121.75 2.4 4.0 BC, Canada Stations used: 1E.BCH2A 1E.MONT1 1E.MONT4 1E.MONT5 1E.MONT7 1E.MONT8 CN.BMTB PQ.NAB1 PQ.NBC8 XL.MG01 XL.MG05 XL.MG09 Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.04 n 3 lp c 0.15 n 3 Best Fitting Double Couple Mo = 2.32e+21 dyne-cm Mw = 3.51 Z = 5 km Plane Strike Dip Rake NP1 324 57 103 NP2 120 35 70 Principal Axes: Axis Value Plunge Azimuth T 2.32e+21 74 270 N 0.00e+00 11 137 P -2.32e+21 11 44 Moment Tensor: (dyne-cm) Component Value Mxx -1.14e+21 Mxy -1.11e+21 Mxz -3.20e+20 Myy -9.05e+20 Myz -9.35e+20 Mzz 2.05e+21 -------------- ---------------------- #######------------------ ############-------------- P - #################----------- --- ####################---------------- -######################--------------- --#######################--------------- --#########################------------- ---############ ###########------------- ----########### T ############------------ ----########### #############----------- -----###########################---------- -----###########################-------- -------#########################-------- --------########################------ ---------######################----- -----------###################---# -------------##############-## --------------------------## ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 2.05e+21 -3.20e+20 9.35e+20 -3.20e+20 -1.14e+21 1.11e+21 9.35e+20 1.11e+21 -9.05e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20211206134529/index.html |
STK = 120 DIP = 35 RAKE = 70 MW = 3.51 HS = 5.0
The NDK file is 20211206134529.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2021/12/06 13:45:29:0 56.60 -121.75 2.4 4.0 BC, Canada Stations used: 1E.BCH2A 1E.MONT1 1E.MONT4 1E.MONT5 1E.MONT7 1E.MONT8 CN.BMTB PQ.NAB1 PQ.NBC8 XL.MG01 XL.MG05 XL.MG09 Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.04 n 3 lp c 0.15 n 3 Best Fitting Double Couple Mo = 2.32e+21 dyne-cm Mw = 3.51 Z = 5 km Plane Strike Dip Rake NP1 324 57 103 NP2 120 35 70 Principal Axes: Axis Value Plunge Azimuth T 2.32e+21 74 270 N 0.00e+00 11 137 P -2.32e+21 11 44 Moment Tensor: (dyne-cm) Component Value Mxx -1.14e+21 Mxy -1.11e+21 Mxz -3.20e+20 Myy -9.05e+20 Myz -9.35e+20 Mzz 2.05e+21 -------------- ---------------------- #######------------------ ############-------------- P - #################----------- --- ####################---------------- -######################--------------- --#######################--------------- --#########################------------- ---############ ###########------------- ----########### T ############------------ ----########### #############----------- -----###########################---------- -----###########################-------- -------#########################-------- --------########################------ ---------######################----- -----------###################---# -------------##############-## --------------------------## ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 2.05e+21 -3.20e+20 9.35e+20 -3.20e+20 -1.14e+21 1.11e+21 9.35e+20 1.11e+21 -9.05e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20211206134529/index.html |
|
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.04 n 3 lp c 0.15 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 170 35 -35 3.19 0.1942 WVFGRD96 2.0 165 10 -30 3.42 0.2349 WVFGRD96 3.0 180 10 -20 3.46 0.3365 WVFGRD96 4.0 305 65 80 3.49 0.3602 WVFGRD96 5.0 120 35 70 3.51 0.3663 WVFGRD96 6.0 110 40 60 3.52 0.3435 WVFGRD96 7.0 110 40 60 3.53 0.3064 WVFGRD96 8.0 315 60 90 3.60 0.2643 WVFGRD96 9.0 310 60 85 3.59 0.2230 WVFGRD96 10.0 310 60 80 3.59 0.1871 WVFGRD96 11.0 305 60 70 3.59 0.1612 WVFGRD96 12.0 305 60 65 3.60 0.1393 WVFGRD96 13.0 135 40 -80 3.59 0.1230 WVFGRD96 14.0 145 40 -75 3.61 0.1122 WVFGRD96 15.0 355 70 -30 3.64 0.1081 WVFGRD96 16.0 350 60 -40 3.65 0.1073 WVFGRD96 17.0 350 50 -40 3.66 0.1079 WVFGRD96 18.0 350 55 -35 3.68 0.1092 WVFGRD96 19.0 350 55 -35 3.69 0.1087 WVFGRD96 20.0 300 30 70 3.70 0.1080 WVFGRD96 21.0 305 35 75 3.73 0.1136 WVFGRD96 22.0 305 35 75 3.75 0.1209 WVFGRD96 23.0 315 45 -80 3.74 0.1254 WVFGRD96 24.0 320 45 -75 3.77 0.1426 WVFGRD96 25.0 320 45 -80 3.79 0.1549 WVFGRD96 26.0 320 40 -80 3.80 0.1635 WVFGRD96 27.0 315 45 -80 3.80 0.1668 WVFGRD96 28.0 315 45 -80 3.80 0.1663 WVFGRD96 29.0 320 45 -75 3.81 0.1651
The best solution is
WVFGRD96 5.0 120 35 70 3.51 0.3663
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.04 n 3 lp c 0.15 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: