Location

Location ANSS

2021/11/11 18:58:50 59.641 -153.120 109.4 3.9 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2021/11/11 18:58:50:0  59.64 -153.12 109.4 3.9 Alaska
 
 Stations used:
   AK.CNP AK.N18K AK.N19K AK.O18K AK.O19K AK.Q19K AK.SKN 
   AK.SLK AK.SSN AV.ACH AV.ILS AV.RED AV.SPCP AV.STLK II.KDAK 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 1.60e+22 dyne-cm
  Mw = 4.07 
  Z  = 126 km
  Plane   Strike  Dip  Rake
   NP1       35    80    20
   NP2      301    70   169
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.60e+22     21     260
    N   0.00e+00     68      61
    P  -1.60e+22      7     167

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.46e+22
       Mxy     5.96e+21
       Mxz     8.12e+20
       Myy     1.27e+22
       Myz    -5.72e+21
       Mzz     1.88e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              --------------------------##           
             --------------------------####          
           ---------------------------#######        
          #######--------------------#########       
         ##############-------------###########      
        ###################--------#############     
        ######################----##############     
       ##########################################    
       #########################----#############    
       ###   #################--------###########    
       ### T ################-----------#########    
        ##   ###############--------------######     
        ##################-----------------#####     
         ################-------------------###      
          #############----------------------#       
           ###########-----------------------        
             #######-----------------------          
              ####------------------------           
                 --------------   -----              
                     ---------- P -                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.88e+21   8.12e+20   5.72e+21 
  8.12e+20  -1.46e+22  -5.96e+21 
  5.72e+21  -5.96e+21   1.27e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20211111185850/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 35
      DIP = 80
     RAKE = 20
       MW = 4.07
       HS = 126.0

The NDK file is 20211111185850.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2021/11/11 18:58:50:0  59.64 -153.12 109.4 3.9 Alaska
 
 Stations used:
   AK.CNP AK.N18K AK.N19K AK.O18K AK.O19K AK.Q19K AK.SKN 
   AK.SLK AK.SSN AV.ACH AV.ILS AV.RED AV.SPCP AV.STLK II.KDAK 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 1.60e+22 dyne-cm
  Mw = 4.07 
  Z  = 126 km
  Plane   Strike  Dip  Rake
   NP1       35    80    20
   NP2      301    70   169
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.60e+22     21     260
    N   0.00e+00     68      61
    P  -1.60e+22      7     167

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.46e+22
       Mxy     5.96e+21
       Mxz     8.12e+20
       Myy     1.27e+22
       Myz    -5.72e+21
       Mzz     1.88e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              --------------------------##           
             --------------------------####          
           ---------------------------#######        
          #######--------------------#########       
         ##############-------------###########      
        ###################--------#############     
        ######################----##############     
       ##########################################    
       #########################----#############    
       ###   #################--------###########    
       ### T ################-----------#########    
        ##   ###############--------------######     
        ##################-----------------#####     
         ################-------------------###      
          #############----------------------#       
           ###########-----------------------        
             #######-----------------------          
              ####------------------------           
                 --------------   -----              
                     ---------- P -                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.88e+21   8.12e+20   5.72e+21 
  8.12e+20  -1.46e+22  -5.96e+21 
  5.72e+21  -5.96e+21   1.27e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20211111185850/index.html
	

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96   60.0    30    70     0   3.91 0.5495
WVFGRD96   62.0    30    70     0   3.92 0.5578
WVFGRD96   64.0    30    70     0   3.93 0.5628
WVFGRD96   66.0    30    75     0   3.93 0.5688
WVFGRD96   68.0    30    75     0   3.94 0.5751
WVFGRD96   70.0    30    75     0   3.94 0.5815
WVFGRD96   72.0    30    75     5   3.94 0.5861
WVFGRD96   74.0    30    75     5   3.95 0.5923
WVFGRD96   76.0    35    75    15   3.96 0.5977
WVFGRD96   78.0    35    75    15   3.96 0.6058
WVFGRD96   80.0    35    75    15   3.97 0.6134
WVFGRD96   82.0    35    75    15   3.98 0.6206
WVFGRD96   84.0    35    75    15   3.98 0.6266
WVFGRD96   86.0    35    75    20   3.98 0.6336
WVFGRD96   88.0    35    75    20   3.99 0.6394
WVFGRD96   90.0    35    75    20   3.99 0.6459
WVFGRD96   92.0    35    75    20   4.00 0.6505
WVFGRD96   94.0    35    75    20   4.01 0.6556
WVFGRD96   96.0    35    75    20   4.01 0.6600
WVFGRD96   98.0    35    80    20   4.01 0.6637
WVFGRD96  100.0    35    80    20   4.02 0.6686
WVFGRD96  102.0    35    80    20   4.02 0.6720
WVFGRD96  104.0    35    80    20   4.03 0.6760
WVFGRD96  106.0    35    80    20   4.03 0.6785
WVFGRD96  108.0    35    80    20   4.04 0.6805
WVFGRD96  110.0    35    80    20   4.04 0.6841
WVFGRD96  112.0    35    80    20   4.05 0.6860
WVFGRD96  114.0    35    80    20   4.05 0.6868
WVFGRD96  116.0    35    80    20   4.05 0.6885
WVFGRD96  118.0   210    90   -20   4.04 0.6792
WVFGRD96  120.0   210    90   -20   4.05 0.6805
WVFGRD96  122.0    35    80    20   4.06 0.6904
WVFGRD96  124.0    35    80    20   4.07 0.6908
WVFGRD96  126.0    35    80    20   4.07 0.6915
WVFGRD96  128.0    35    80    20   4.07 0.6911
WVFGRD96  130.0   210    90   -20   4.07 0.6853
WVFGRD96  132.0    35    80    20   4.08 0.6903
WVFGRD96  134.0    35    80    20   4.08 0.6892
WVFGRD96  136.0   210    90   -20   4.08 0.6840
WVFGRD96  138.0   210    90   -20   4.08 0.6826

The best solution is

WVFGRD96  126.0    35    80    20   4.07 0.6915

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Thu Nov 11 18:39:00 CST 2021