USGS/SLU Moment Tensor Solution ENS 2021/09/19 22:24:34:0 36.77 -98.05 1.5 3.8 Oklahoma Stations used: GS.OK038 GS.OK052 N4.TUL3 O2.ALVA O2.CALT O2.CRES O2.DRUM O2.FW06 O2.MRSH O2.PERY O2.PW09 O2.SC11 O2.SC15 O2.SC16 O2.SC19 O2.SC20 OK.AMES OK.CROK Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.05 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 2.40e+21 dyne-cm Mw = 3.52 Z = 6 km Plane Strike Dip Rake NP1 12 69 103 NP2 160 25 60 Principal Axes: Axis Value Plunge Azimuth T 2.40e+21 64 304 N 0.00e+00 12 188 P -2.40e+21 22 92 Moment Tensor: (dyne-cm) Component Value Mxx 1.40e+20 Mxy -1.23e+20 Mxz 5.65e+20 Myy -1.73e+21 Myz -1.63e+21 Mzz 1.59e+21 ############-- -################----- ---#################-------- --###################--------- ---####################----------- ---######################----------- ----######################------------ ----######## ###########-------------- ----######## T ###########-------------- -----######## ###########--------------- -----######################--------- --- -----#####################---------- P --- -----#####################---------- --- -----###################---------------- ------##################---------------- -----#################---------------- ------##############---------------- ------#############--------------- ------##########-------------- -------######--------------- -------##------------- ---######----- Global CMT Convention Moment Tensor: R T P 1.59e+21 5.65e+20 1.63e+21 5.65e+20 1.40e+20 1.23e+20 1.63e+21 1.23e+20 -1.73e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210919222434/index.html |
STK = 160 DIP = 25 RAKE = 60 MW = 3.52 HS = 6.0
The NDK file is 20210919222434.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2021/09/19 22:24:34:0 36.77 -98.05 1.5 3.8 Oklahoma Stations used: GS.OK038 GS.OK052 N4.TUL3 O2.ALVA O2.CALT O2.CRES O2.DRUM O2.FW06 O2.MRSH O2.PERY O2.PW09 O2.SC11 O2.SC15 O2.SC16 O2.SC19 O2.SC20 OK.AMES OK.CROK Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.05 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 2.40e+21 dyne-cm Mw = 3.52 Z = 6 km Plane Strike Dip Rake NP1 12 69 103 NP2 160 25 60 Principal Axes: Axis Value Plunge Azimuth T 2.40e+21 64 304 N 0.00e+00 12 188 P -2.40e+21 22 92 Moment Tensor: (dyne-cm) Component Value Mxx 1.40e+20 Mxy -1.23e+20 Mxz 5.65e+20 Myy -1.73e+21 Myz -1.63e+21 Mzz 1.59e+21 ############-- -################----- ---#################-------- --###################--------- ---####################----------- ---######################----------- ----######################------------ ----######## ###########-------------- ----######## T ###########-------------- -----######## ###########--------------- -----######################--------- --- -----#####################---------- P --- -----#####################---------- --- -----###################---------------- ------##################---------------- -----#################---------------- ------##############---------------- ------#############--------------- ------##########-------------- -------######--------------- -------##------------- ---######----- Global CMT Convention Moment Tensor: R T P 1.59e+21 5.65e+20 1.63e+21 5.65e+20 1.40e+20 1.23e+20 1.63e+21 1.23e+20 -1.73e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210919222434/index.html |
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.05 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 130 75 -10 3.04 0.2370 WVFGRD96 2.0 125 55 -20 3.19 0.2994 WVFGRD96 3.0 120 55 -35 3.27 0.3349 WVFGRD96 4.0 155 30 50 3.43 0.3535 WVFGRD96 5.0 160 25 60 3.50 0.3668 WVFGRD96 6.0 160 25 60 3.52 0.3731 WVFGRD96 7.0 160 25 60 3.55 0.3726 WVFGRD96 8.0 170 15 80 3.63 0.3684 WVFGRD96 9.0 175 15 85 3.64 0.3646 WVFGRD96 10.0 300 55 -35 3.46 0.3634 WVFGRD96 11.0 300 55 -35 3.47 0.3597 WVFGRD96 12.0 300 55 -35 3.48 0.3538 WVFGRD96 13.0 300 55 -35 3.50 0.3466 WVFGRD96 14.0 300 60 -35 3.50 0.3379 WVFGRD96 15.0 350 25 80 3.68 0.3304 WVFGRD96 16.0 350 25 80 3.69 0.3201 WVFGRD96 17.0 350 25 80 3.69 0.3078 WVFGRD96 18.0 180 15 90 3.73 0.2989 WVFGRD96 19.0 0 75 90 3.73 0.2924
The best solution is
WVFGRD96 6.0 160 25 60 3.52 0.3731
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.05 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.
The GSKAN.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 20 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 0.7000 3.7762 2.1823 2.2792 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 0.7000 3.7810 2.1854 2.2818 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 1.0000 5.3466 3.0853 2.5688 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 1.0000 5.8307 3.3645 2.6648 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 7.0000 6.1587 3.5538 2.7469 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.3056 3.6456 2.7933 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.6013 3.8129 2.8766 0.00 0.00 0.00 0.00 1.00 1.00 0.0000 8.0871 4.6640 3.3410 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: