Location

Location ANSS

2021/09/12 13:30:08 31.613 -104.235 7.0 3.8 Texas

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2021/09/12 13:30:08:0  31.61 -104.24   7.0 3.8 Texas
 
 Stations used:
   EP.KIDD GM.NMP44 IM.TX31 N4.MSTX SC.121A TX.ALPN TX.MB01 
   TX.MB04 TX.MNHN TX.PB01 TX.PB05 TX.PB11 TX.PB28 TX.PECS 
   TX.POST TX.VHRN US.MNTX 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +40
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 1.82e+21 dyne-cm
  Mw = 3.44 
  Z  = 7 km
  Plane   Strike  Dip  Rake
   NP1       73    61   -99
   NP2      270    30   -75
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.82e+21     16     169
    N   0.00e+00      7      77
    P  -1.82e+21     73     322

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.52e+21
       Mxy    -2.35e+20
       Mxz    -8.79e+20
       Myy    -5.62e+12
       Myz     4.08e+20
       Mzz    -1.52e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              ############################           
             #########------------#########          
           ######----------------------######        
          ####----------------------------####       
         ###--------------------------------###      
        ###------------   -------------------###     
        #-------------- P ----------------------     
       #---------------   --------------------##-    
       #------------------------------------####-    
       -----------------------------------#######    
       --------------------------------##########    
        ----------------------------############     
        #-----------------------################     
         #####----------#######################      
          ####################################       
           ##################################        
             ##############################          
              ################   #########           
                 ############# T ######              
                     #########   ##                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.52e+21  -8.79e+20  -4.08e+20 
 -8.79e+20   1.52e+21   2.35e+20 
 -4.08e+20   2.35e+20  -5.62e+12 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210912133008/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 270
      DIP = 30
     RAKE = -75
       MW = 3.44
       HS = 7.0

The NDK file is 20210912133008.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2021/09/12 13:30:08:0  31.61 -104.24   7.0 3.8 Texas
 
 Stations used:
   EP.KIDD GM.NMP44 IM.TX31 N4.MSTX SC.121A TX.ALPN TX.MB01 
   TX.MB04 TX.MNHN TX.PB01 TX.PB05 TX.PB11 TX.PB28 TX.PECS 
   TX.POST TX.VHRN US.MNTX 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +40
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 1.82e+21 dyne-cm
  Mw = 3.44 
  Z  = 7 km
  Plane   Strike  Dip  Rake
   NP1       73    61   -99
   NP2      270    30   -75
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.82e+21     16     169
    N   0.00e+00      7      77
    P  -1.82e+21     73     322

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.52e+21
       Mxy    -2.35e+20
       Mxz    -8.79e+20
       Myy    -5.62e+12
       Myz     4.08e+20
       Mzz    -1.52e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              ############################           
             #########------------#########          
           ######----------------------######        
          ####----------------------------####       
         ###--------------------------------###      
        ###------------   -------------------###     
        #-------------- P ----------------------     
       #---------------   --------------------##-    
       #------------------------------------####-    
       -----------------------------------#######    
       --------------------------------##########    
        ----------------------------############     
        #-----------------------################     
         #####----------#######################      
          ####################################       
           ##################################        
             ##############################          
              ################   #########           
                 ############# T ######              
                     #########   ##                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.52e+21  -8.79e+20  -4.08e+20 
 -8.79e+20   1.52e+21   2.35e+20 
 -4.08e+20   2.35e+20  -5.62e+12 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210912133008/index.html
	

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
br c 0.12 0.25 n 4 p 2
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   155    90    10   2.96 0.1840
WVFGRD96    2.0    80    40   -90   3.24 0.3492
WVFGRD96    3.0   280    45   -50   3.27 0.3853
WVFGRD96    4.0    75    65   -90   3.39 0.4642
WVFGRD96    5.0    75    65   -95   3.42 0.5248
WVFGRD96    6.0    75    60   -95   3.44 0.5486
WVFGRD96    7.0   270    30   -75   3.44 0.5500
WVFGRD96    8.0   265    30   -80   3.48 0.5486
WVFGRD96    9.0   270    35   -75   3.48 0.5436
WVFGRD96   10.0   265    35   -80   3.49 0.5410
WVFGRD96   11.0   275    45   -65   3.48 0.5409
WVFGRD96   12.0   275    45   -65   3.49 0.5369
WVFGRD96   13.0   270    45   -70   3.50 0.5307
WVFGRD96   14.0   270    45   -70   3.50 0.5245
WVFGRD96   15.0   270    45   -70   3.51 0.5161
WVFGRD96   16.0   270    45   -70   3.52 0.5059
WVFGRD96   17.0   145    55    55   3.50 0.4975
WVFGRD96   18.0   145    55    55   3.51 0.4906
WVFGRD96   19.0   145    55    55   3.52 0.4834
WVFGRD96   20.0   140    55    50   3.52 0.4752
WVFGRD96   21.0   130    60    40   3.51 0.4672
WVFGRD96   22.0   130    60    40   3.52 0.4614
WVFGRD96   23.0   130    60    40   3.53 0.4554
WVFGRD96   24.0   130    55    40   3.54 0.4505
WVFGRD96   25.0   130    55    40   3.55 0.4455
WVFGRD96   26.0   130    55    40   3.56 0.4378
WVFGRD96   27.0   130    55    40   3.56 0.4286
WVFGRD96   28.0   130    60    40   3.56 0.4219
WVFGRD96   29.0   130    60    40   3.57 0.4155

The best solution is

WVFGRD96    7.0   270    30   -75   3.44 0.5500

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
br c 0.12 0.25 n 4 p 2
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Sun Sep 12 09:57:17 CDT 2021