Location

Location ANSS

2021/08/13 11:57:35 35.877 -84.898 0.0 3.0 Tennessee

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2021/08/13 11:57:35:0  35.88  -84.90   0.0 3.0 Tennessee
 
 Stations used:
   CO.CASEE CO.HODGE CO.PAULI ET.CPCT IM.TKL IU.WCI IU.WVT 
   N4.R49A N4.R50A N4.S51A N4.T47A N4.T50A N4.U49A N4.V48A 
   N4.V53A N4.V55A N4.W50A N4.W52A N4.X48A N4.X51A N4.Y52A 
   NM.BLO NM.USIN US.GOGA US.LRAL US.TZTN 
 
 Filtering commands used:
   cut o DIST/3.3 -20 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.06 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 8.04e+21 dyne-cm
  Mw = 3.87 
  Z  = 4 km
  Plane   Strike  Dip  Rake
   NP1      245    81    95
   NP2       35    10    60
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   8.04e+21     53     161
    N   0.00e+00      5      65
    P  -8.04e+21     36     331

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.44e+21
       Mxy     1.36e+21
       Mxz    -6.99e+21
       Myy    -9.41e+20
       Myz     3.09e+21
       Mzz     2.38e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ---------------------------#           
             -------   --------------------          
           --------- P ---------------------#        
          ----------   ----------------------#       
         ------------------------------------#-      
        ------------------------------#########-     
        -------------------------##############-     
       ----------------------##################--    
       ------------------######################--    
       --------------##########################--    
       -----------#############################--    
        -------###############################--     
        ----#################   ##############--     
         #################### T #############--      
          ###################   ############--       
           ################################--        
             ############################--          
              #########################---           
                 ###################---              
                     --#######-----                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.38e+21  -6.99e+21  -3.09e+21 
 -6.99e+21  -1.44e+21  -1.36e+21 
 -3.09e+21  -1.36e+21  -9.41e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210813115735/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 35
      DIP = 10
     RAKE = 60
       MW = 3.87
       HS = 4.0

The NDK file is 20210813115735.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
MTGRDDC
MTGRDDEV
MTGRD
WVFMTD
WVFMT
 USGS/SLU Moment Tensor Solution
 ENS  2021/08/13 11:57:35:0  35.88  -84.90   0.0 3.0 Tennessee
 
 Stations used:
   CO.CASEE CO.HODGE CO.PAULI ET.CPCT IM.TKL IU.WCI IU.WVT 
   N4.R49A N4.R50A N4.S51A N4.T47A N4.T50A N4.U49A N4.V48A 
   N4.V53A N4.V55A N4.W50A N4.W52A N4.X48A N4.X51A N4.Y52A 
   NM.BLO NM.USIN US.GOGA US.LRAL US.TZTN 
 
 Filtering commands used:
   cut o DIST/3.3 -20 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.06 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 8.04e+21 dyne-cm
  Mw = 3.87 
  Z  = 4 km
  Plane   Strike  Dip  Rake
   NP1      245    81    95
   NP2       35    10    60
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   8.04e+21     53     161
    N   0.00e+00      5      65
    P  -8.04e+21     36     331

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.44e+21
       Mxy     1.36e+21
       Mxz    -6.99e+21
       Myy    -9.41e+20
       Myz     3.09e+21
       Mzz     2.38e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ---------------------------#           
             -------   --------------------          
           --------- P ---------------------#        
          ----------   ----------------------#       
         ------------------------------------#-      
        ------------------------------#########-     
        -------------------------##############-     
       ----------------------##################--    
       ------------------######################--    
       --------------##########################--    
       -----------#############################--    
        -------###############################--     
        ----#################   ##############--     
         #################### T #############--      
          ###################   ############--       
           ################################--        
             ############################--          
              #########################---           
                 ###################---              
                     --#######-----                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.38e+21  -6.99e+21  -3.09e+21 
 -6.99e+21  -1.44e+21  -1.36e+21 
 -3.09e+21  -1.36e+21  -9.41e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210813115735/index.html
	
 Moment (dyne-cm)   8.01E+21   dyne-cm
 Magnitude (Mw)    3.87
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   8.01E+21     53.    161.
    N  -1.30E+18      5.     65.
    P  -8.01E+21     36.    331.
 Moment Tensor: (dyne-cm) Aki-Richards
    Component   Value
       Mxx   -1.43E+21
       Mxy    1.35E+21
       Mxz   -6.97E+21
       Myy   -9.39E+20
       Myz    3.08E+21
       Mzz    2.37E+21
                                                     
                                                     
                                                     
                    --------------                   
                ----------------------               
             ---------------------------#            
            -------   --------------------           
          --------- P ---------------------#         
         ----------   ----------------------#        
        ------------------------------------#-       
       ------------------------------#########-      
       -------------------------##############-      
      ----------------------##################--     
      ------------------######################--     
      --------------##########################--     
      -----------#############################--     
       -------###############################--      
       ----#################   ##############--      
        -################### T #############--       
         ###################   ############--        
          ################################--         
            ############################--           
             #########################---            
                ###################---               
                    --#######-----                   
                                                     
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor: (dyne-cm)
         R         T         F
  R  2.37E+21 -6.97E+21 -3.08E+21
  T -6.97E+21 -1.43E+21 -1.35E+21
  F -3.08E+21 -1.35E+21 -9.39E+20
        
 Moment (dyne-cm)   1.07E+22   dyne-cm
 Magnitude (Mw)    3.95
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.67E+21      5.     88.
    N   5.70E+21      8.    179.
    P  -1.23E+22     81.    328.
 Moment Tensor: (dyne-cm) Aki-Richards
    Component   Value
       Mxx    5.39E+21
       Mxy    2.31E+20
       Mxz   -2.33E+21
       Myy    6.54E+21
       Myz    1.56E+21
       Mzz   -1.19E+22
                                                     
                                                     
                                                     
                    ##############                   
                ######################               
             ############################            
            ########------------##########           
          #######------------------#########         
         ######---------------------#########        
        ######------------------------########       
       ######-------------------------#########      
       ######-----------   ------------########      
      #######----------- P ------------######        
      #######-----------   ------------###### T      
      #######--------------------------######        
      #######-------------------------##########     
       #######------------------------#########      
       ########----------------------##########      
        #########------------------###########       
         ##########--------------############        
          ##################################         
            ##############################           
             ############################            
                ######################               
                    ##############                   
                                                     
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor: (dyne-cm)
         R         T         F
  R -1.19E+22 -2.33E+21 -1.56E+21
  T -2.33E+21  5.39E+21 -2.31E+20
  F -1.56E+21 -2.31E+20  6.54E+21
        
 Moment (dyne-cm)   1.48E+22   dyne-cm
 Magnitude (Mw)    4.05
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T  -3.77E+21     10.    140.
    N  -5.72E+21      0.    230.
    P  -1.98E+22     80.    320.
 Moment Tensor: (dyne-cm) Aki-Richards
    Component   Value
       Mxx   -4.86E+21
       Mxy   -7.24E+20
       Mxz   -2.10E+21
       Myy   -5.11E+21
       Myz    1.76E+21
       Mzz   -1.93E+22
 Global CMT Convention Moment Tensor: (dyne-cm)
         R         T         F
  R -1.93E+22 -2.10E+21 -1.76E+21
  T -2.10E+21 -4.86E+21  7.24E+20
  F -1.76E+21  7.24E+20 -5.11E+21
 Moment (dyne-cm)   1.48E+22   dyne-cm
 Magnitude (Mw)    4.05
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T  -3.77E+21     10.    140.
    N  -5.72E+21      0.    230.
    P  -1.98E+22     80.    320.
 Moment Tensor: (dyne-cm) Aki-Richards               Lune parameters
    Component   Value
       Mxx   -4.86E+21                                beta:  143.82
       Mxy   -7.24E+20                                gamma:  23.58
       Mxy   -7.24E+20
       Mxz   -2.10E+21
       Myy   -5.11E+21
       Myz    1.76E+21
       Mzz   -1.93E+22
 
 
 
                    --------------                         .
                ----------------------                    .-.
             ----------------------------                .....
            ------------------------------              .----.
          ----------------------------------            .......
         ------------------------------------           .. .. .
        --------------------------------------         .------.
       ----------------------------------------        . . . ..
       ----------------   ---------------------        . . . . .
      ----------------- P ----------------------       .-------.
      -----------------   ----------------------       . . . . .
      ------------------------------------------       . . . . .
      ------------------------------------------       .-------.
       ----------------------------------------        . . . . .
       ----------------------------------------        .-------.
        --------------------------------------         . . . . .
         ------------------------------------          . . . ..
          ----------------------------   ---           .------.
            -------------------------- T -              .. .. .
             -------------------------                  .....#.
                ----------------------                  .----.
                    --------------                       .....
                                                          .-.
                                                           .
 
 
        
 Moment (dyne-cm)   8.40E+21   dyne-cm
 Magnitude (Mw)    3.88
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.15E+21      4.    106.
    N   4.55E+21     16.     15.
    P  -9.70E+21     74.    209.
 Moment Tensor: (dyne-cm) Aki-Richards
    Component   Value
       Mxx    3.75E+21
       Mxy   -6.15E+20
       Mxz    3.32E+21
       Myy    4.85E+21
       Myz    1.85E+21
       Mzz   -8.60E+21
 Global CMT Convention Moment Tensor: (dyne-cm)
         R         T         F
  R -8.60E+21  3.32E+21 -1.85E+21
  T  3.32E+21  3.75E+21  6.15E+20
  F -1.85E+21  6.15E+20  4.85E+21
 Moment (dyne-cm)   8.40E+21   dyne-cm
 Magnitude (Mw)    3.88
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.15E+21      4.    106.
    N   4.55E+21     16.     15.
    P  -9.70E+21     74.    209.
 Moment Tensor: (dyne-cm) Aki-Richards               Lune parameters
    Component   Value
       Mxx    3.75E+21                                beta:   90.00
       Mxy   -6.15E+20                                gamma:  27.96
       Mxy   -6.15E+20
       Mxz    3.32E+21
       Myy    4.85E+21
       Myz    1.85E+21
       Mzz   -8.60E+21
 
 
 
                    ##############                         .
                ######################                    .-.
             ############################                .....
            ##############################              .----.
          ##################################            .......
         ##############-----#################           .. .. .
        ##########--------------##############         .------.
       #########-------------------############        . . . ..
       #######----------------------###########        . . . . .
      #######------------------------###########       .-------.
      ######--------------------------##########       . . . . .
      ######------------   -----------##########       . . . . .
      ######------------ P ------------######          .-------#
       #####------------   ------------###### T        . . . . .
       #####--------------------------#######          .-------.
        #####-------------------------########         . . . . .
         #####-----------------------########          . . . ..
          #####---------------------########           .------.
            #####-----------------########              .. .. .
             #######-----------##########               .......
                ######################                  .----.
                    ##############                       .....
                                                          .-.
                                                           .
 
 
        
 Moment (dyne-cm)   1.03E+22   dyne-cm
 Magnitude (Mw)    3.94
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T  -9.26E+19      3.    110.
    N  -4.52E+20     18.     19.
    P  -1.46E+22     71.    209.
 Moment Tensor: (dyne-cm) Aki-Richards
    Component   Value
       Mxx   -1.50E+21
       Mxy   -7.27E+20
       Mxz    3.71E+21
       Myy   -4.78E+20
       Myz    2.10E+21
       Mzz   -1.31E+22
 Global CMT Convention Moment Tensor: (dyne-cm)
         R         T         F
  R -1.31E+22  3.71E+21 -2.10E+21
  T  3.71E+21 -1.50E+21  7.27E+20
  F -2.10E+21  7.27E+20 -4.78E+20
 Moment (dyne-cm)   1.03E+22   dyne-cm
 Magnitude (Mw)    3.94
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T  -9.26E+19      3.    110.
    N  -4.52E+20     18.     19.
    P  -1.46E+22     71.    209.
 Moment Tensor: (dyne-cm) Aki-Richards               Lune parameters
    Component   Value
       Mxx   -1.50E+21                                beta:  126.77
       Mxy   -7.27E+20                                gamma:  28.75
       Mxy   -7.27E+20
       Mxz    3.71E+21
       Myy   -4.78E+20
       Myz    2.10E+21
       Mzz   -1.31E+22
 
 
 
                    --------------                         .
                ----------------------                    .-.
             ----------------------------                .....
            ------------------------------              .----.
          ----------------------------------            .......
         ------------------------------------           .. .. .
        --------------------------------------         .------.
       ----------------------------------------        . . . ..
       ----------------------------------------        . . . . .
      ------------------------------------------       .-------.
      ------------------------------------------       . . . . .
      ------------------------------------------       . . . . .
      -----------------   ----------------------       .-------.
       ---------------- P -------------------          . . . . .
       ----------------   ------------------- T        .-------.
        -------------------------------------          . . . . .
         ------------------------------------          . . . ..
          ----------------------------------           .------#
            ------------------------------              .. .. .
             ----------------------------               .......
                ----------------------                  .----.
                    --------------                       .....
                                                          .-.
                                                           .
 
 
        

Magnitudes

mLg Magnitude


(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.06 n 3 
lp c 0.10 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   230    15    90   3.95 0.3836
WVFGRD96    2.0    30     5    55   3.96 0.4577
WVFGRD96    3.0    30    10    55   3.90 0.4904
WVFGRD96    4.0    35    10    60   3.87 0.5010
WVFGRD96    5.0    30     5    50   3.85 0.4963
WVFGRD96    6.0   260    10   -80   3.84 0.4858
WVFGRD96    7.0   235    20  -100   3.86 0.4800
WVFGRD96    8.0    50    60   -80   3.90 0.4789
WVFGRD96    9.0    45    55   -80   3.91 0.4729
WVFGRD96   10.0    45    60   -85   3.92 0.4484
WVFGRD96   11.0    40    55   -85   3.93 0.4347
WVFGRD96   12.0    40    55   -85   3.93 0.4173
WVFGRD96   13.0    40    55   -90   3.92 0.3972
WVFGRD96   14.0    30    55   -95   3.92 0.3758
WVFGRD96   15.0   220    40   -80   3.93 0.3545
WVFGRD96   16.0   225    45   -80   3.93 0.3348
WVFGRD96   17.0   225    50   -80   3.93 0.3178
WVFGRD96   18.0   225    50   -80   3.93 0.3022
WVFGRD96   19.0   225    50   -75   3.94 0.2862
WVFGRD96   20.0   225    50   -80   3.96 0.2649
WVFGRD96   21.0   225    50   -80   3.96 0.2523
WVFGRD96   22.0    35    65   -90   3.97 0.2429
WVFGRD96   23.0   215    25   -85   3.98 0.2350
WVFGRD96   24.0   215    25   -85   3.99 0.2279
WVFGRD96   25.0   215    25   -85   4.00 0.2202
WVFGRD96   26.0   215    25   -85   4.00 0.2121
WVFGRD96   27.0    70    80   -85   4.01 0.2049
WVFGRD96   28.0    75    80   -85   4.02 0.2032
WVFGRD96   29.0   305    20   -70   4.06 0.2023

The best solution is

WVFGRD96    4.0    35    10    60   3.87 0.5010

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.06 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.


Grid Search Full Moment Tensor Inversion using wvfmtd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfmtd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.06 n 3 
lp c 0.10 n 3 
The results of this grid search over depth are as follow:

MT Program  H(km) Mxx(dyne-cm)   Myy        Mxy        Mxz        Myz        Mzz       Mw      Fit
WVFMTD96    0.5  113.   78.   89.   4.00     0.485 0.150E-06     0.504     0.697 0.109E-06  58.7
WVFMTD96    1.0  111.   76.   89.   4.02     0.464 0.153E-06     0.483     0.682 0.111E-06  65.6
WVFMTD96    2.0  101.   72.   93.   3.97     0.359 0.167E-06     0.370     0.599 0.123E-06  78.8
WVFMTD96    3.0  109.   78.   95.   3.93     0.344 0.169E-06     0.361     0.586 0.121E-06  59.9
WVFMTD96    4.0  310.   65.  -96.   3.91     0.288 0.176E-06     0.302     0.537 0.130E-06  70.4
WVFMTD96    5.0  326.   57.  -98.   3.96     0.390 0.163E-06     0.408     0.624 0.120E-06  88.3
WVFMTD96    6.0  351.   53. -103.   3.96     0.454 0.154E-06     0.474     0.674 0.113E-06  90.7
WVFMTD96    7.0    2.   51. -105.   3.95     0.485 0.150E-06     0.505     0.696 0.109E-06  88.6
WVFMTD96    8.0    4.   50. -106.   3.94     0.490 0.149E-06     0.509     0.700 0.109E-06  87.8
WVFMTD96    9.0   11.   48. -107.   3.93     0.486 0.150E-06     0.505     0.697 0.109E-06  82.5
WVFMTD96   10.0   14.   48. -108.   3.96     0.472 0.152E-06     0.490     0.687 0.111E-06  85.6

The best solution is

WVFMTD96    4.0  310.   65.  -96.   3.91     0.288 0.176E-06     0.302     0.537 0.130E-06  70.4

The complete moment tensor decomposition using the program mtdinfo is given in the text file MTDinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.

The P-wave first motion mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.06 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.


Grid Search Full Moment Tensor Inversion using wvfmt96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfmt96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.06 n 3 
lp c 0.10 n 3 
The results of this grid search over depth are as follow:

MT Program  H(km) Mxx(dyne-cm)   Myy        Mxy        Mxz        Myz        Mzz       Mw      Fit
WVFMT96    0.5  112.   85.   89.   4.00     0.487 0.149E-06     0.507     0.698 0.108E-06  33.9
WVFMT96    1.0  293.   86.  -89.   4.06     0.486 0.149E-06     0.508     0.698 0.108E-06   2.9
WVFMT96    2.0  286.   75.  -90.   4.07     0.498 0.148E-06     0.514     0.706 0.108E-06  42.2
WVFMT96    3.0  293.   69.  -90.   4.08     0.506 0.147E-06     0.523     0.712 0.107E-06  66.0
WVFMT96    4.0  298.   66.  -91.   4.06     0.514 0.145E-06     0.531     0.717 0.106E-06  84.1
WVFMT96    5.0  344.   58. -109.   4.04     0.519 0.145E-06     0.537     0.720 0.106E-06  99.4
WVFMT96    6.0    5.   51. -114.   4.01     0.518 0.145E-06     0.537     0.720 0.106E-06  92.9
WVFMT96    7.0   10.   49. -114.   3.99     0.513 0.146E-06     0.534     0.716 0.106E-06  86.2
WVFMT96    8.0   13.   48. -112.   3.96     0.505 0.147E-06     0.525     0.711 0.107E-06  82.1
WVFMT96    9.0   14.   48. -111.   3.94     0.494 0.148E-06     0.513     0.703 0.108E-06  81.2
WVFMT96   10.0   14.   48. -110.   3.96     0.478 0.151E-06     0.495     0.691 0.110E-06  85.2

The best solution is

WVFMT96   10.0   14.   48. -110.   3.96     0.478 0.151E-06     0.495     0.691 0.110E-06  85.2

The complete moment tensor decomposition using the program mtinfo is given in the text file MTinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.

The P-wave first motion mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.06 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.


Grid Search Full Moment Tensor Inversion using wvfmtgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfmtgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.06 n 3 
lp c 0.10 n 3 
The results of this grid search over depth are as follow:

MT Program  H(km) Mxx(dyne-cm)   Myy        Mxy        Mxz        Myz        Mzz       Mw      Fit
WVFMTGRD96    1.0 -0.105E+23 -0.112E+23 -0.315E+21 -0.701E+21  0.210E+22 -0.176E+23  4.0808  0.5303
WVFMTGRD96    2.0 -0.105E+23 -0.103E+23 -0.908E+21 -0.233E+22  0.383E+22 -0.201E+23  4.1063  0.5465
WVFMTGRD96    3.0 -0.778E+22 -0.800E+22 -0.903E+21 -0.445E+22  0.269E+22 -0.193E+23  4.0803  0.5656
WVFMTGRD96    4.0 -0.704E+22 -0.772E+22 -0.684E+21 -0.361E+22  0.118E+22 -0.196E+23  4.0720  0.5769
WVFMTGRD96    5.0 -0.486E+22 -0.511E+22 -0.724E+21 -0.210E+22  0.176E+22 -0.193E+23  4.0467  0.5823
WVFMTGRD96    6.0 -0.354E+22 -0.261E+22 -0.703E+21 -0.284E+22  0.141E+22 -0.173E+23  4.0098  0.5820
WVFMTGRD96    7.0 -0.457E+21  0.326E+21 -0.354E+21 -0.301E+22  0.142E+22 -0.152E+23  3.9677  0.5749
WVFMTGRD96    8.0  0.125E+22  0.172E+22 -0.663E+21 -0.240E+22 -0.393E+18 -0.147E+23  3.9560  0.5637
WVFMTGRD96    9.0  0.355E+22  0.428E+22 -0.640E+21 -0.250E+22  0.219E+21 -0.130E+23  3.9434  0.5480
WVFMTGRD96   10.0  0.267E+22  0.384E+22 -0.421E+21 -0.355E+22  0.122E+21 -0.144E+23  3.9690  0.5255

The best solution is

WVFMTGRD96    5.0 -0.486E+22 -0.511E+22 -0.724E+21 -0.210E+22  0.176E+22 -0.193E+23  4.0467  0.5823

The complete moment tensor decomposition using the program mtinfo is given in the text file MTGRDinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.

The P-wave first motion mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.06 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.


Grid Search Double Couple Inversion using wvfmtgrd96 -DC

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfmtgrd96 -DC was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.06 n 3 
lp c 0.10 n 3 
The results of this grid search over depth are as follow:

MT Program  H(km) Mxx(dyne-cm)   Myy        Mxy        Mxz        Myz        Mzz       Mw      Fit
WVFMTGRD96    1.0 -0.312E+22 -0.220E+22  0.262E+22  0.705E+22 -0.592E+22  0.532E+22  3.9511  0.3836
WVFMTGRD96    2.0 -0.863E+21 -0.693E+21  0.947E+21 -0.983E+22  0.452E+22  0.156E+22  3.9593  0.4577
WVFMTGRD96    3.0 -0.139E+22 -0.110E+22  0.152E+22 -0.779E+22  0.342E+22  0.250E+22  3.8999  0.4904
WVFMTGRD96    4.0 -0.143E+22 -0.939E+21  0.135E+22 -0.697E+22  0.308E+22  0.237E+22  3.8692  0.5010
WVFMTGRD96    5.0 -0.605E+21 -0.379E+21  0.634E+21 -0.690E+22  0.247E+22  0.985E+21  3.8463  0.4963
WVFMTGRD96    6.0  0.233E+22  0.151E+21 -0.633E+21 -0.649E+22  0.242E+22 -0.248E+22  3.8447  0.4858
WVFMTGRD96    7.0  0.379E+22  0.120E+22 -0.219E+22 -0.562E+22  0.236E+22 -0.500E+22  3.8648  0.4800
WVFMTGRD96    8.0  0.312E+22  0.443E+22 -0.395E+22 -0.384E+22  0.221E+22 -0.756E+22  3.8983  0.4789
WVFMTGRD96    9.0  0.299E+22  0.565E+22 -0.432E+22 -0.288E+22  0.157E+22 -0.865E+22  3.9137  0.4729
WVFMTGRD96   10.0  0.341E+22  0.485E+22 -0.413E+22 -0.367E+22  0.308E+22 -0.826E+22  3.9206  0.4484

The best solution is

WVFMTGRD96    4.0 -0.143E+22 -0.939E+21  0.135E+22 -0.697E+22  0.308E+22  0.237E+22  3.8692  0.5010

The complete moment tensor decomposition using the program mtinfo is given in the text file MTGRDDCinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.

The P-wave first motion mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.06 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.


Grid Search Deviatoric Moment Tensor Inversion using wvfmtgrd96 -DEV

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfmtgrd96 -DEV was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.06 n 3 
lp c 0.10 n 3 
The results of this grid search over depth are as follow:

MT Program  H(km) Mxx(dyne-cm)   Myy        Mxy        Mxz        Myz        Mzz       Mw      Fit
WVFMTGRD96    1.0 -0.438E+22 -0.479E+22 -0.364E+21  0.434E+22 -0.367E+22  0.917E+22  3.9266  0.4966
WVFMTGRD96    2.0 -0.220E+22 -0.334E+22 -0.436E+21 -0.958E+22  0.433E+22  0.555E+22  3.9758  0.4821
WVFMTGRD96    3.0 -0.168E+22 -0.283E+22 -0.287E+21 -0.791E+22  0.347E+22  0.451E+22  3.9184  0.5049
WVFMTGRD96    4.0 -0.338E+22 -0.453E+22  0.988E+20 -0.622E+22  0.340E+22  0.791E+22  3.9296  0.5195
WVFMTGRD96    5.0 -0.551E+22 -0.458E+22 -0.732E+21 -0.394E+22  0.409E+22  0.101E+23  3.9464  0.5253
WVFMTGRD96    6.0  0.568E+22  0.692E+22  0.577E+21 -0.317E+22  0.148E+22 -0.126E+23  3.9735  0.5332
WVFMTGRD96    7.0  0.584E+22  0.645E+22 -0.328E+21 -0.271E+22  0.120E+22 -0.123E+23  3.9623  0.5553
WVFMTGRD96    8.0  0.539E+22  0.654E+22  0.231E+21 -0.233E+22  0.156E+22 -0.119E+23  3.9534  0.5563
WVFMTGRD96    9.0  0.553E+22  0.630E+22 -0.669E+21 -0.262E+22  0.229E+21 -0.118E+23  3.9503  0.5462
WVFMTGRD96   10.0  0.590E+22  0.696E+22 -0.413E+21 -0.301E+22  0.201E+21 -0.129E+23  3.9753  0.5244

The best solution is

WVFMTGRD96    8.0  0.539E+22  0.654E+22  0.231E+21 -0.233E+22  0.156E+22 -0.119E+23  3.9534  0.5563

The complete moment tensor decomposition using the program mtinfo is given in the text file MTGRDDEVinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.

The P-wave first motion mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.06 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.

Velocity Model

The CUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
CUS Model with Q from simple gamma values
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
  H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC)   QP   QS  ETAP  ETAS  FREFP  FREFS
  1.0000  5.0000  2.8900  2.5000 0.172E-02 0.387E-02 0.00  0.00  1.00  1.00 
  9.0000  6.1000  3.5200  2.7300 0.160E-02 0.363E-02 0.00  0.00  1.00  1.00 
 10.0000  6.4000  3.7000  2.8200 0.149E-02 0.336E-02 0.00  0.00  1.00  1.00 
 20.0000  6.7000  3.8700  2.9020 0.000E-04 0.000E-04 0.00  0.00  1.00  1.00 
  0.0000  8.1500  4.7000  3.3640 0.194E-02 0.431E-02 0.00  0.00  1.00  1.00 

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Wed 15 Sep 2021 08:27:51 AM CDT