USGS/SLU Moment Tensor Solution ENS 2021/07/26 09:10:38:0 62.89 -143.59 17.6 4.9 Alaska Stations used: AK.BARN AK.BMR AK.BPAW AK.CAST AK.CCB AK.CRQ AK.CUT AK.DHY AK.DIV AK.DOT AK.FID AK.FYU AK.GHO AK.GLB AK.GRNC AK.H23K AK.H24K AK.HARP AK.HDA AK.I23K AK.I27K AK.J25K AK.K27K AK.KLU AK.KTH AK.LOGN AK.M26K AK.M27K AK.MCAR AK.MCK AK.MESA AK.NEA2 AK.PAX AK.PIN AK.POKR AK.PPD AK.PPLA AK.RIDG AK.RND AK.SAW AK.SCRK AK.SUCK AK.TGL AK.TRF AK.VRDI AK.WAX AK.WRH AK.YAH CN.DAWY CN.HYT IM.IL31 IU.COLA Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 1.35e+22 dyne-cm Mw = 4.02 Z = 13 km Plane Strike Dip Rake NP1 255 85 30 NP2 162 60 174 Principal Axes: Axis Value Plunge Azimuth T 1.35e+22 24 123 N 0.00e+00 60 264 P -1.35e+22 17 25 Moment Tensor: (dyne-cm) Component Value Mxx -6.91e+21 Mxy -9.79e+21 Mxz -6.15e+21 Myy 5.74e+21 Myz 2.70e+21 Mzz 1.17e+21 -------------- ####------------- -- ######-------------- P ----- ######--------------- ------ ########-------------------------- #########--------------------------- ##########---------------------------- ###########----------------------------- ###########------------------------##### #############--------------############### #############-------###################### ########################################## #######-------############################ ##------------########################## --------------################## ##### --------------################# T #### --------------################ ### ---------------################### --------------################ ---------------############# --------------######## -------------# Global CMT Convention Moment Tensor: R T P 1.17e+21 -6.15e+21 -2.70e+21 -6.15e+21 -6.91e+21 9.79e+21 -2.70e+21 9.79e+21 5.74e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210726091038/index.html |
STK = 255 DIP = 85 RAKE = 30 MW = 4.02 HS = 13.0
The NDK file is 20210726091038.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2021/07/26 09:10:38:0 62.89 -143.59 17.6 4.9 Alaska Stations used: AK.BARN AK.BMR AK.BPAW AK.CAST AK.CCB AK.CRQ AK.CUT AK.DHY AK.DIV AK.DOT AK.FID AK.FYU AK.GHO AK.GLB AK.GRNC AK.H23K AK.H24K AK.HARP AK.HDA AK.I23K AK.I27K AK.J25K AK.K27K AK.KLU AK.KTH AK.LOGN AK.M26K AK.M27K AK.MCAR AK.MCK AK.MESA AK.NEA2 AK.PAX AK.PIN AK.POKR AK.PPD AK.PPLA AK.RIDG AK.RND AK.SAW AK.SCRK AK.SUCK AK.TGL AK.TRF AK.VRDI AK.WAX AK.WRH AK.YAH CN.DAWY CN.HYT IM.IL31 IU.COLA Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 1.35e+22 dyne-cm Mw = 4.02 Z = 13 km Plane Strike Dip Rake NP1 255 85 30 NP2 162 60 174 Principal Axes: Axis Value Plunge Azimuth T 1.35e+22 24 123 N 0.00e+00 60 264 P -1.35e+22 17 25 Moment Tensor: (dyne-cm) Component Value Mxx -6.91e+21 Mxy -9.79e+21 Mxz -6.15e+21 Myy 5.74e+21 Myz 2.70e+21 Mzz 1.17e+21 -------------- ####------------- -- ######-------------- P ----- ######--------------- ------ ########-------------------------- #########--------------------------- ##########---------------------------- ###########----------------------------- ###########------------------------##### #############--------------############### #############-------###################### ########################################## #######-------############################ ##------------########################## --------------################## ##### --------------################# T #### --------------################ ### ---------------################### --------------################ ---------------############# --------------######## -------------# Global CMT Convention Moment Tensor: R T P 1.17e+21 -6.15e+21 -2.70e+21 -6.15e+21 -6.91e+21 9.79e+21 -2.70e+21 9.79e+21 5.74e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210726091038/index.html |
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 70 65 -40 3.62 0.2955 WVFGRD96 2.0 70 65 -40 3.75 0.3874 WVFGRD96 3.0 250 75 -40 3.79 0.4226 WVFGRD96 4.0 250 80 -40 3.82 0.4599 WVFGRD96 5.0 255 85 35 3.84 0.5003 WVFGRD96 6.0 255 85 35 3.87 0.5357 WVFGRD96 7.0 255 85 30 3.89 0.5651 WVFGRD96 8.0 255 85 35 3.94 0.5898 WVFGRD96 9.0 255 85 35 3.96 0.6080 WVFGRD96 10.0 255 85 30 3.98 0.6208 WVFGRD96 11.0 255 85 30 3.99 0.6292 WVFGRD96 12.0 255 85 30 4.01 0.6330 WVFGRD96 13.0 255 85 30 4.02 0.6331 WVFGRD96 14.0 255 85 25 4.03 0.6310 WVFGRD96 15.0 255 85 25 4.05 0.6269 WVFGRD96 16.0 255 85 25 4.06 0.6212 WVFGRD96 17.0 255 85 25 4.07 0.6135 WVFGRD96 18.0 255 85 25 4.08 0.6044 WVFGRD96 19.0 255 85 25 4.09 0.5942 WVFGRD96 20.0 255 85 25 4.09 0.5833 WVFGRD96 21.0 255 85 25 4.10 0.5724 WVFGRD96 22.0 255 85 25 4.11 0.5606 WVFGRD96 23.0 255 85 25 4.12 0.5487 WVFGRD96 24.0 255 85 25 4.12 0.5368 WVFGRD96 25.0 255 85 25 4.13 0.5248 WVFGRD96 26.0 255 80 25 4.14 0.5127 WVFGRD96 27.0 255 80 25 4.14 0.5018 WVFGRD96 28.0 255 80 25 4.15 0.4917 WVFGRD96 29.0 75 80 25 4.14 0.4839
The best solution is
WVFGRD96 13.0 255 85 30 4.02 0.6331
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: