USGS/SLU Moment Tensor Solution ENS 2021/06/24 16:30:28:0 17.94 -67.11 11.0 3.7 Puerto Rico Stations used: GS.PR02 GS.PR04 GS.PR05 GS.PR06 IU.SJG PR.AGPR PR.AOPR PR.CELP PR.ECPR PR.EMPR PR.GCPR PR.PRSN Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 5.50e+21 dyne-cm Mw = 3.76 Z = 12 km Plane Strike Dip Rake NP1 105 85 -10 NP2 196 80 -175 Principal Axes: Axis Value Plunge Azimuth T 5.50e+21 3 151 N 0.00e+00 79 259 P -5.50e+21 11 60 Moment Tensor: (dyne-cm) Component Value Mxx 2.85e+21 Mxy -4.63e+21 Mxz -7.86e+20 Myy -2.68e+21 Myz -6.99e+20 Mzz -1.66e+20 ############-- ###############------- #################----------- #################------------- ##################------------- ###################------------- P - ###################-------------- -- ###################--------------------- --#################--------------------- -------############----------------------- -------------######----------------------- ------------------##---------------------- ------------------#########--------------- ----------------###################----- ----------------######################## --------------######################## -------------####################### ------------###################### ----------#################### --------############## ### -----############## T -############# Global CMT Convention Moment Tensor: R T P -1.66e+20 -7.86e+20 6.99e+20 -7.86e+20 2.85e+21 4.63e+21 6.99e+20 4.63e+21 -2.68e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210624163028/index.html |
STK = 105 DIP = 85 RAKE = -10 MW = 3.76 HS = 12.0
The NDK file is 20210624163028.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2021/06/24 16:30:28:0 17.94 -67.11 11.0 3.7 Puerto Rico Stations used: GS.PR02 GS.PR04 GS.PR05 GS.PR06 IU.SJG PR.AGPR PR.AOPR PR.CELP PR.ECPR PR.EMPR PR.GCPR PR.PRSN Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 5.50e+21 dyne-cm Mw = 3.76 Z = 12 km Plane Strike Dip Rake NP1 105 85 -10 NP2 196 80 -175 Principal Axes: Axis Value Plunge Azimuth T 5.50e+21 3 151 N 0.00e+00 79 259 P -5.50e+21 11 60 Moment Tensor: (dyne-cm) Component Value Mxx 2.85e+21 Mxy -4.63e+21 Mxz -7.86e+20 Myy -2.68e+21 Myz -6.99e+20 Mzz -1.66e+20 ############-- ###############------- #################----------- #################------------- ##################------------- ###################------------- P - ###################-------------- -- ###################--------------------- --#################--------------------- -------############----------------------- -------------######----------------------- ------------------##---------------------- ------------------#########--------------- ----------------###################----- ----------------######################## --------------######################## -------------####################### ------------###################### ----------#################### --------############## ### -----############## T -############# Global CMT Convention Moment Tensor: R T P -1.66e+20 -7.86e+20 6.99e+20 -7.86e+20 2.85e+21 4.63e+21 6.99e+20 4.63e+21 -2.68e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210624163028/index.html |
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 105 90 0 3.18 0.2762 WVFGRD96 2.0 105 90 -5 3.35 0.4042 WVFGRD96 3.0 105 90 -5 3.43 0.4729 WVFGRD96 4.0 105 85 -10 3.49 0.5193 WVFGRD96 5.0 105 85 -15 3.54 0.5572 WVFGRD96 6.0 105 85 -15 3.58 0.5961 WVFGRD96 7.0 105 85 -10 3.62 0.6356 WVFGRD96 8.0 105 85 -15 3.67 0.6753 WVFGRD96 9.0 105 85 -15 3.70 0.6983 WVFGRD96 10.0 105 85 -10 3.73 0.7154 WVFGRD96 11.0 105 85 -10 3.75 0.7243 WVFGRD96 12.0 105 85 -10 3.76 0.7262 WVFGRD96 13.0 105 85 -10 3.78 0.7229 WVFGRD96 14.0 105 85 -10 3.79 0.7150 WVFGRD96 15.0 105 85 -10 3.80 0.7047 WVFGRD96 16.0 105 90 -10 3.80 0.6943 WVFGRD96 17.0 100 85 -15 3.80 0.6848 WVFGRD96 18.0 100 85 -15 3.81 0.6752 WVFGRD96 19.0 280 90 15 3.81 0.6644 WVFGRD96 20.0 100 85 -15 3.83 0.6566 WVFGRD96 21.0 280 90 15 3.83 0.6475 WVFGRD96 22.0 280 90 20 3.84 0.6397 WVFGRD96 23.0 100 90 -20 3.84 0.6334 WVFGRD96 24.0 100 90 -20 3.85 0.6261 WVFGRD96 25.0 100 90 -20 3.86 0.6198 WVFGRD96 26.0 280 90 20 3.86 0.6109 WVFGRD96 27.0 100 90 -20 3.87 0.6055 WVFGRD96 28.0 100 90 -20 3.87 0.5981 WVFGRD96 29.0 100 90 -20 3.88 0.5909
The best solution is
WVFGRD96 12.0 105 85 -10 3.76 0.7262
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: