USGS/SLU Moment Tensor Solution ENS 2021/06/11 18:19:27:0 28.37 -105.16 10.0 4.1 Chihuahua, Mexico Stations used: EP.KIDD GM.NMP01 GM.NMP11 GM.NMP23 GM.NMP25 GM.NMP35 GM.NMP44 IM.TX31 MX.HPIG MX.HSIG NX.WTX29 TX.833A TX.ALPN TX.MB01 TX.MB06 TX.MNHN TX.ODSA TX.OZNA TX.PB01 TX.PB03 TX.PB04 TX.PB07 TX.PB10 TX.PB11 TX.PB16 TX.PB28 TX.PECS TX.SAND TX.SGCY TX.VHRN US.JCT US.MNTX Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.025 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 5.69e+21 dyne-cm Mw = 3.77 Z = 3 km Plane Strike Dip Rake NP1 127 51 -98 NP2 320 40 -80 Principal Axes: Axis Value Plunge Azimuth T 5.69e+21 5 223 N 0.00e+00 6 132 P -5.69e+21 82 353 Moment Tensor: (dyne-cm) Component Value Mxx 2.90e+21 Mxy 2.83e+21 Mxz -1.20e+21 Myy 2.61e+21 Myz -2.59e+20 Mzz -5.52e+21 ############## ###################### ------------################ -----------------############# ----------------------############ #------------------------########### ###-------------------------########## ####---------------------------######### ####-------------- -----------######## ######------------- P ------------######## #######------------ -------------####### ########---------------------------####### ##########--------------------------###### ##########-------------------------##### ############-----------------------##### ##############--------------------#### ################-----------------### ## ##############-------------## T ##########################- #########################- ###################### ############## Global CMT Convention Moment Tensor: R T P -5.52e+21 -1.20e+21 2.59e+20 -1.20e+21 2.90e+21 -2.83e+21 2.59e+20 -2.83e+21 2.61e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210611181927/index.html |
STK = 320 DIP = 40 RAKE = -80 MW = 3.77 HS = 3.0
The NDK file is 20210611181927.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2021/06/11 18:19:27:0 28.37 -105.16 10.0 4.1 Chihuahua, Mexico Stations used: EP.KIDD GM.NMP01 GM.NMP11 GM.NMP23 GM.NMP25 GM.NMP35 GM.NMP44 IM.TX31 MX.HPIG MX.HSIG NX.WTX29 TX.833A TX.ALPN TX.MB01 TX.MB06 TX.MNHN TX.ODSA TX.OZNA TX.PB01 TX.PB03 TX.PB04 TX.PB07 TX.PB10 TX.PB11 TX.PB16 TX.PB28 TX.PECS TX.SAND TX.SGCY TX.VHRN US.JCT US.MNTX Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.025 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 5.69e+21 dyne-cm Mw = 3.77 Z = 3 km Plane Strike Dip Rake NP1 127 51 -98 NP2 320 40 -80 Principal Axes: Axis Value Plunge Azimuth T 5.69e+21 5 223 N 0.00e+00 6 132 P -5.69e+21 82 353 Moment Tensor: (dyne-cm) Component Value Mxx 2.90e+21 Mxy 2.83e+21 Mxz -1.20e+21 Myy 2.61e+21 Myz -2.59e+20 Mzz -5.52e+21 ############## ###################### ------------################ -----------------############# ----------------------############ #------------------------########### ###-------------------------########## ####---------------------------######### ####-------------- -----------######## ######------------- P ------------######## #######------------ -------------####### ########---------------------------####### ##########--------------------------###### ##########-------------------------##### ############-----------------------##### ##############--------------------#### ################-----------------### ## ##############-------------## T ##########################- #########################- ###################### ############## Global CMT Convention Moment Tensor: R T P -5.52e+21 -1.20e+21 2.59e+20 -1.20e+21 2.90e+21 -2.83e+21 2.59e+20 -2.83e+21 2.61e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210611181927/index.html |
(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.025 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 150 50 -70 3.62 0.4406 WVFGRD96 2.0 155 50 -60 3.68 0.4916 WVFGRD96 3.0 320 40 -80 3.77 0.5296 WVFGRD96 4.0 325 40 -70 3.81 0.5125 WVFGRD96 5.0 340 45 -45 3.79 0.4713 WVFGRD96 6.0 350 55 -15 3.76 0.4406 WVFGRD96 7.0 -5 60 0 3.76 0.4330 WVFGRD96 8.0 350 45 -20 3.81 0.4318 WVFGRD96 9.0 185 50 25 3.82 0.4361 WVFGRD96 10.0 190 45 30 3.83 0.4511 WVFGRD96 11.0 190 50 35 3.85 0.4641 WVFGRD96 12.0 190 50 35 3.86 0.4742 WVFGRD96 13.0 190 50 35 3.86 0.4815 WVFGRD96 14.0 190 50 35 3.87 0.4865 WVFGRD96 15.0 190 50 35 3.88 0.4895 WVFGRD96 16.0 195 50 45 3.90 0.4909 WVFGRD96 17.0 195 50 45 3.91 0.4914 WVFGRD96 18.0 225 30 95 3.98 0.4941 WVFGRD96 19.0 40 60 85 3.98 0.4964 WVFGRD96 20.0 40 60 85 3.98 0.4976 WVFGRD96 21.0 225 30 95 4.00 0.4965 WVFGRD96 22.0 40 60 85 4.00 0.4948 WVFGRD96 23.0 225 30 95 4.01 0.4932 WVFGRD96 24.0 35 60 85 4.02 0.4894 WVFGRD96 25.0 35 60 85 4.02 0.4855 WVFGRD96 26.0 35 60 85 4.03 0.4811 WVFGRD96 27.0 230 30 105 4.03 0.4764 WVFGRD96 28.0 35 60 85 4.04 0.4704 WVFGRD96 29.0 35 60 85 4.04 0.4645
The best solution is
WVFGRD96 3.0 320 40 -80 3.77 0.5296
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.025 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: