USGS/SLU Moment Tensor Solution ENS 2021/04/30 17:19:24:0 64.83 -152.40 19.4 4.3 Alaska Stations used: AK.BPAW AK.CAST AK.CCB AK.CUT AK.DHY AK.DOT AK.E24K AK.F20K AK.F21K AK.FYU AK.G19K AK.G23K AK.G24K AK.H17K AK.H21K AK.H22K AK.H24K AK.HDA AK.I23K AK.J17K AK.J19K AK.J20K AK.J25K AK.K20K AK.K24K AK.KNK AK.L18K AK.L19K AK.L20K AK.M20K AK.MCK AK.MLY AK.NEA2 AK.PAX AK.POKR AK.PPD AK.PPLA AK.RC01 AK.RIDG AK.RND AK.SAW AK.SCM AK.SCRK AK.SKN AK.SSN AK.TRF AK.WRH AT.PMR AV.SPCP IM.IL31 IU.COLA TA.E23K TA.F19K TA.F24K TA.F25K TA.G18K TA.H19K TA.I17K TA.I20K TA.J16K TA.J18K TA.K17K TA.M22K Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.60e+22 dyne-cm Mw = 4.07 Z = 17 km Plane Strike Dip Rake NP1 291 64 -146 NP2 185 60 -30 Principal Axes: Axis Value Plunge Azimuth T 1.60e+22 3 57 N 0.00e+00 49 324 P -1.60e+22 41 150 Moment Tensor: (dyne-cm) Component Value Mxx -2.04e+21 Mxy 1.12e+22 Mxz 7.27e+21 Myy 8.98e+21 Myz -3.39e+21 Mzz -6.94e+21 -------####### ----------############ -----------################# -----------################### ------------##################### -------------##################### T --################################# #############--------################### #############-------------############## ##############----------------############ #############--------------------######### #############----------------------####### #############------------------------##### ############--------------------------## ############---------------------------# ############------------ ----------- ###########------------ P ---------- ##########------------ --------- #########--------------------- #########------------------- #######--------------- ####---------- Global CMT Convention Moment Tensor: R T P -6.94e+21 7.27e+21 3.39e+21 7.27e+21 -2.04e+21 -1.12e+22 3.39e+21 -1.12e+22 8.98e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210430171924/index.html |
STK = 185 DIP = 60 RAKE = -30 MW = 4.07 HS = 17.0
The NDK file is 20210430171924.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2021/04/30 17:19:24:0 64.83 -152.40 19.4 4.3 Alaska Stations used: AK.BPAW AK.CAST AK.CCB AK.CUT AK.DHY AK.DOT AK.E24K AK.F20K AK.F21K AK.FYU AK.G19K AK.G23K AK.G24K AK.H17K AK.H21K AK.H22K AK.H24K AK.HDA AK.I23K AK.J17K AK.J19K AK.J20K AK.J25K AK.K20K AK.K24K AK.KNK AK.L18K AK.L19K AK.L20K AK.M20K AK.MCK AK.MLY AK.NEA2 AK.PAX AK.POKR AK.PPD AK.PPLA AK.RC01 AK.RIDG AK.RND AK.SAW AK.SCM AK.SCRK AK.SKN AK.SSN AK.TRF AK.WRH AT.PMR AV.SPCP IM.IL31 IU.COLA TA.E23K TA.F19K TA.F24K TA.F25K TA.G18K TA.H19K TA.I17K TA.I20K TA.J16K TA.J18K TA.K17K TA.M22K Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.60e+22 dyne-cm Mw = 4.07 Z = 17 km Plane Strike Dip Rake NP1 291 64 -146 NP2 185 60 -30 Principal Axes: Axis Value Plunge Azimuth T 1.60e+22 3 57 N 0.00e+00 49 324 P -1.60e+22 41 150 Moment Tensor: (dyne-cm) Component Value Mxx -2.04e+21 Mxy 1.12e+22 Mxz 7.27e+21 Myy 8.98e+21 Myz -3.39e+21 Mzz -6.94e+21 -------####### ----------############ -----------################# -----------################### ------------##################### -------------##################### T --################################# #############--------################### #############-------------############## ##############----------------############ #############--------------------######### #############----------------------####### #############------------------------##### ############--------------------------## ############---------------------------# ############------------ ----------- ###########------------ P ---------- ##########------------ --------- #########--------------------- #########------------------- #######--------------- ####---------- Global CMT Convention Moment Tensor: R T P -6.94e+21 7.27e+21 3.39e+21 7.27e+21 -2.04e+21 -1.12e+22 3.39e+21 -1.12e+22 8.98e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210430171924/index.html |
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 15 85 -5 3.48 0.2450 WVFGRD96 2.0 55 45 85 3.72 0.3095 WVFGRD96 3.0 20 65 10 3.67 0.3058 WVFGRD96 4.0 20 55 10 3.72 0.3198 WVFGRD96 5.0 200 80 50 3.76 0.3476 WVFGRD96 6.0 200 80 45 3.78 0.3852 WVFGRD96 7.0 200 45 15 3.81 0.4257 WVFGRD96 8.0 200 45 15 3.88 0.4605 WVFGRD96 9.0 205 45 30 3.91 0.5000 WVFGRD96 10.0 180 50 -35 3.94 0.5462 WVFGRD96 11.0 185 55 -30 3.96 0.5858 WVFGRD96 12.0 185 60 -30 3.98 0.6169 WVFGRD96 13.0 185 60 -30 4.00 0.6417 WVFGRD96 14.0 185 60 -30 4.02 0.6597 WVFGRD96 15.0 185 60 -30 4.04 0.6714 WVFGRD96 16.0 185 60 -30 4.05 0.6777 WVFGRD96 17.0 185 60 -30 4.07 0.6787 WVFGRD96 18.0 185 60 -30 4.08 0.6752 WVFGRD96 19.0 185 65 -30 4.09 0.6681 WVFGRD96 20.0 185 65 -30 4.10 0.6578 WVFGRD96 21.0 185 60 -30 4.11 0.6443 WVFGRD96 22.0 185 60 -25 4.12 0.6291 WVFGRD96 23.0 185 60 -25 4.13 0.6119 WVFGRD96 24.0 185 60 -25 4.14 0.5929 WVFGRD96 25.0 185 60 -25 4.14 0.5730 WVFGRD96 26.0 185 60 -25 4.15 0.5526 WVFGRD96 27.0 185 60 -25 4.15 0.5314 WVFGRD96 28.0 185 60 -30 4.15 0.5094 WVFGRD96 29.0 185 60 -30 4.16 0.4871
The best solution is
WVFGRD96 17.0 185 60 -30 4.07 0.6787
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: