Location

Location ANSS

2021/04/19 20:42:38 44.531 -115.248 11.8 3.9 Idaho

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2021/04/19 20:42:38:0  44.53 -115.25  11.8 3.9 Idaho
 
 Stations used:
   GS.ID11 GS.ID12 IE.BCYI IW.DLMT IW.FXWY IW.MFID IW.PLID 
   MB.SRMT US.AHID US.BMO US.BOZ US.ELK US.HAWA US.HLID US.MSO 
   US.NEW UU.SPU UW.BRAN UW.DDRF UW.IRON UW.LBRT UW.PHIN 
   UW.UMAT UW.WA2 WY.YHH WY.YMP WY.YMR 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 2.95e+21 dyne-cm
  Mw = 3.58 
  Z  = 12 km
  Plane   Strike  Dip  Rake
   NP1      279    72   -99
   NP2      125    20   -65
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.95e+21     26      15
    N   0.00e+00      8     281
    P  -2.95e+21     62     175

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.55e+21
       Mxy     6.62e+20
       Mxz     2.35e+21
       Myy     1.65e+20
       Myz     2.15e+20
       Mzz    -1.72e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ##############   #####              
              ################# T ########           
             ##################   #########          
           ##################################        
          ####################################       
         -#####################################      
        -#######################################     
        -###----------------####################     
       ##----------------------------############    
       ##---------------------------------#######    
       ###------------------------------------###    
       ###--------------------------------------#    
        ###----------------   ------------------     
        ####--------------- P ------------------     
         ####--------------   -----------------      
          ####--------------------------------       
           #####-----------------------------        
             #####-------------------------          
              ########------------------##           
                 ###########-----######              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.72e+21   2.35e+21  -2.15e+20 
  2.35e+21   1.55e+21  -6.62e+20 
 -2.15e+20  -6.62e+20   1.65e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210419204238/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 125
      DIP = 20
     RAKE = -65
       MW = 3.58
       HS = 12.0

The NDK file is 20210419204238.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2021/04/19 20:42:38:0  44.53 -115.25  11.8 3.9 Idaho
 
 Stations used:
   GS.ID11 GS.ID12 IE.BCYI IW.DLMT IW.FXWY IW.MFID IW.PLID 
   MB.SRMT US.AHID US.BMO US.BOZ US.ELK US.HAWA US.HLID US.MSO 
   US.NEW UU.SPU UW.BRAN UW.DDRF UW.IRON UW.LBRT UW.PHIN 
   UW.UMAT UW.WA2 WY.YHH WY.YMP WY.YMR 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 2.95e+21 dyne-cm
  Mw = 3.58 
  Z  = 12 km
  Plane   Strike  Dip  Rake
   NP1      279    72   -99
   NP2      125    20   -65
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.95e+21     26      15
    N   0.00e+00      8     281
    P  -2.95e+21     62     175

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.55e+21
       Mxy     6.62e+20
       Mxz     2.35e+21
       Myy     1.65e+20
       Myz     2.15e+20
       Mzz    -1.72e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ##############   #####              
              ################# T ########           
             ##################   #########          
           ##################################        
          ####################################       
         -#####################################      
        -#######################################     
        -###----------------####################     
       ##----------------------------############    
       ##---------------------------------#######    
       ###------------------------------------###    
       ###--------------------------------------#    
        ###----------------   ------------------     
        ####--------------- P ------------------     
         ####--------------   -----------------      
          ####--------------------------------       
           #####-----------------------------        
             #####-------------------------          
              ########------------------##           
                 ###########-----######              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.72e+21   2.35e+21  -2.15e+20 
  2.35e+21   1.55e+21  -6.62e+20 
 -2.15e+20  -6.62e+20   1.65e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210419204238/index.html
	

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0    -5    80   -10   3.24 0.3758
WVFGRD96    2.0   355    75   -15   3.37 0.4023
WVFGRD96    3.0     0    55     5   3.42 0.3818
WVFGRD96    4.0   155    25   -30   3.42 0.4384
WVFGRD96    5.0   150    25   -40   3.43 0.5166
WVFGRD96    6.0   145    20   -45   3.44 0.5775
WVFGRD96    7.0   140    20   -50   3.44 0.6204
WVFGRD96    8.0   145    20   -45   3.53 0.6534
WVFGRD96    9.0   130    20   -60   3.54 0.6777
WVFGRD96   10.0   125    20   -65   3.55 0.6921
WVFGRD96   11.0   125    20   -65   3.57 0.6998
WVFGRD96   12.0   125    20   -65   3.58 0.7002
WVFGRD96   13.0   130    20   -55   3.58 0.6964
WVFGRD96   14.0   140    25   -45   3.60 0.6892
WVFGRD96   15.0   140    25   -45   3.61 0.6793
WVFGRD96   16.0   145    25   -40   3.62 0.6668
WVFGRD96   17.0   145    25   -40   3.63 0.6532
WVFGRD96   18.0   150    25   -35   3.64 0.6387
WVFGRD96   19.0   150    25   -35   3.66 0.6237
WVFGRD96   20.0   155    25   -25   3.66 0.6095
WVFGRD96   21.0   155    25   -25   3.68 0.5953
WVFGRD96   22.0   160    25   -20   3.69 0.5804
WVFGRD96   23.0   160    25   -20   3.70 0.5652
WVFGRD96   24.0   170    30    -5   3.71 0.5503
WVFGRD96   25.0   255    10    70   3.70 0.5415
WVFGRD96   26.0   260    10    75   3.71 0.5334
WVFGRD96   27.0   265    10    80   3.72 0.5234
WVFGRD96   28.0   270    10    85   3.73 0.5122
WVFGRD96   29.0    95    80    90   3.74 0.5016

The best solution is

WVFGRD96   12.0   125    20   -65   3.58 0.7002

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Apr 19 16:44:41 CDT 2021