USGS/SLU Moment Tensor Solution ENS 2021/04/04 17:09:21:0 63.19 -143.51 2.8 3.7 Alaska Stations used: AK.BARN AK.BMR AK.CCB AK.CRQ AK.DHY AK.DIV AK.DOT AK.FYU AK.G27K AK.GHO AK.GLB AK.GRNC AK.H24K AK.HDA AK.HIN AK.I23K AK.I27K AK.J25K AK.K24K AK.K27K AK.KLU AK.KNK AK.LOGN AK.M26K AK.M27K AK.MCAR AK.MCK AK.MESA AK.NEA2 AK.P23K AK.PAX AK.POKR AK.PPD AK.RIDG AK.RND AK.SCM AK.SCRK AK.TGL AK.TRF AK.VRDI IU.COLA TA.G26K TA.H27K TA.H29M TA.I28M TA.I29M TA.J29N TA.J30M TA.K29M TA.L27K TA.L29M TA.M29M TA.N30M TA.N31M Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 2.75e+21 dyne-cm Mw = 3.56 Z = 12 km Plane Strike Dip Rake NP1 194 72 -154 NP2 95 65 -20 Principal Axes: Axis Value Plunge Azimuth T 2.75e+21 5 323 N 0.00e+00 58 226 P -2.75e+21 31 56 Moment Tensor: (dyne-cm) Component Value Mxx 1.12e+21 Mxy -2.25e+21 Mxz -5.08e+20 Myy -4.02e+20 Myz -1.14e+21 Mzz -7.22e+20 ###########--- ##############-------- T ############------------- # ###########--------------- ################------------------ #################----------- ----- #################------------ P ------ #################------------- ------- ################------------------------ #################------------------------- -###############-------------------------- ---#############-------------------------- -------#########------------------------## ----------####---------------------##### --------------########---############### -------------######################### ------------######################## -----------####################### ---------##################### --------#################### -----################# --############ Global CMT Convention Moment Tensor: R T P -7.22e+20 -5.08e+20 1.14e+21 -5.08e+20 1.12e+21 2.25e+21 1.14e+21 2.25e+21 -4.02e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210404170921/index.html |
STK = 95 DIP = 65 RAKE = -20 MW = 3.56 HS = 12.0
The NDK file is 20210404170921.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2021/04/04 17:09:21:0 63.19 -143.51 2.8 3.7 Alaska Stations used: AK.BARN AK.BMR AK.CCB AK.CRQ AK.DHY AK.DIV AK.DOT AK.FYU AK.G27K AK.GHO AK.GLB AK.GRNC AK.H24K AK.HDA AK.HIN AK.I23K AK.I27K AK.J25K AK.K24K AK.K27K AK.KLU AK.KNK AK.LOGN AK.M26K AK.M27K AK.MCAR AK.MCK AK.MESA AK.NEA2 AK.P23K AK.PAX AK.POKR AK.PPD AK.RIDG AK.RND AK.SCM AK.SCRK AK.TGL AK.TRF AK.VRDI IU.COLA TA.G26K TA.H27K TA.H29M TA.I28M TA.I29M TA.J29N TA.J30M TA.K29M TA.L27K TA.L29M TA.M29M TA.N30M TA.N31M Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 2.75e+21 dyne-cm Mw = 3.56 Z = 12 km Plane Strike Dip Rake NP1 194 72 -154 NP2 95 65 -20 Principal Axes: Axis Value Plunge Azimuth T 2.75e+21 5 323 N 0.00e+00 58 226 P -2.75e+21 31 56 Moment Tensor: (dyne-cm) Component Value Mxx 1.12e+21 Mxy -2.25e+21 Mxz -5.08e+20 Myy -4.02e+20 Myz -1.14e+21 Mzz -7.22e+20 ###########--- ##############-------- T ############------------- # ###########--------------- ################------------------ #################----------- ----- #################------------ P ------ #################------------- ------- ################------------------------ #################------------------------- -###############-------------------------- ---#############-------------------------- -------#########------------------------## ----------####---------------------##### --------------########---############### -------------######################### ------------######################## -----------####################### ---------##################### --------#################### -----################# --############ Global CMT Convention Moment Tensor: R T P -7.22e+20 -5.08e+20 1.14e+21 -5.08e+20 1.12e+21 2.25e+21 1.14e+21 2.25e+21 -4.02e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210404170921/index.html USGS/SLU Moment Tensor Solution ENS 2021/04/04 17:09:22:0 63.25 -143.24 0.0 3.6 Alaska Stations used: AK.BARN AK.BMR AK.CCB AK.CRQ AK.DHY AK.DIV AK.DOT AK.FYU AK.G27K AK.GHO AK.GLB AK.GRNC AK.H24K AK.HDA AK.HIN AK.I23K AK.I27K AK.J25K AK.K24K AK.K27K AK.KLU AK.KNK AK.LOGN AK.M26K AK.M27K AK.MCAR AK.MCK AK.MESA AK.NEA2 AK.P23K AK.PAX AK.POKR AK.PPD AK.RIDG AK.RND AK.SCM AK.SCRK AK.TGL AK.TRF AK.VRDI IU.COLA TA.G26K TA.H27K TA.H29M TA.I28M TA.I29M TA.J29N TA.J30M TA.K29M TA.L27K TA.L29M TA.M29M TA.N30M TA.N31M Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 2.57e+21 dyne-cm Mw = 3.54 Z = 11 km Plane Strike Dip Rake NP1 191 67 -153 NP2 90 65 -25 Principal Axes: Axis Value Plunge Azimuth T 2.57e+21 2 320 N 0.00e+00 55 228 P -2.57e+21 35 51 Moment Tensor: (dyne-cm) Component Value Mxx 8.32e+20 Mxy -2.11e+21 Mxz -6.98e+20 Myy -1.85e+14 Myz -9.85e+20 Mzz -8.32e+20 ##########---- ############---------- T ############-------------- ###########---------------- ###############------------------- ###############------------ ------ ###############------------- P ------- ################------------- -------- ###############------------------------- ################-------------------------- ###############--------------------------- -##############--------------------------# ----###########-----------------------#### --------######------------------######## -------------########################### ------------########################## -----------######################### -----------####################### ---------##################### --------#################### ------################ ---########### Global CMT Convention Moment Tensor: R T P -8.32e+20 -6.98e+20 9.85e+20 -6.98e+20 8.32e+20 2.11e+21 9.85e+20 2.11e+21 -1.85e+14 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210404170922/index.html |
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 10 75 -30 3.22 0.3004 WVFGRD96 2.0 125 45 60 3.42 0.3765 WVFGRD96 3.0 130 45 70 3.48 0.4231 WVFGRD96 4.0 130 50 70 3.50 0.4232 WVFGRD96 5.0 290 55 35 3.44 0.4204 WVFGRD96 6.0 95 75 -35 3.44 0.4329 WVFGRD96 7.0 90 65 -35 3.47 0.4637 WVFGRD96 8.0 90 65 -35 3.51 0.4733 WVFGRD96 9.0 90 65 -35 3.53 0.4926 WVFGRD96 10.0 90 65 -30 3.54 0.5012 WVFGRD96 11.0 95 65 -25 3.55 0.5035 WVFGRD96 12.0 95 65 -20 3.56 0.5051 WVFGRD96 13.0 95 65 -20 3.57 0.5043 WVFGRD96 14.0 95 65 -20 3.58 0.5019 WVFGRD96 15.0 95 65 -20 3.59 0.4988 WVFGRD96 16.0 95 65 -20 3.60 0.4949 WVFGRD96 17.0 95 70 -20 3.60 0.4907 WVFGRD96 18.0 95 70 -20 3.61 0.4862 WVFGRD96 19.0 95 70 -15 3.62 0.4816 WVFGRD96 20.0 95 70 -15 3.63 0.4771 WVFGRD96 21.0 95 70 -15 3.64 0.4712 WVFGRD96 22.0 95 70 -15 3.64 0.4658 WVFGRD96 23.0 95 70 -15 3.65 0.4602 WVFGRD96 24.0 95 70 -15 3.66 0.4542 WVFGRD96 25.0 100 70 15 3.66 0.4416 WVFGRD96 26.0 100 70 20 3.67 0.4379 WVFGRD96 27.0 100 65 20 3.68 0.4354 WVFGRD96 28.0 100 65 20 3.69 0.4326 WVFGRD96 29.0 100 65 20 3.70 0.4300
The best solution is
WVFGRD96 12.0 95 65 -20 3.56 0.5051
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: