USGS/SLU Moment Tensor Solution ENS 2021/04/01 19:49:55:0 31.68 -104.39 6.5 4.0 Texas Stations used: EP.KIDD GM.NMP02 GM.NMP25 GM.NMP41 GM.NMP53 SC.Y22A TX.ALPN TX.MB05 TX.MNHN TX.ODSA TX.OZNA TX.PB01 TX.PB05 TX.PB07 TX.PB11 TX.PB28 TX.PECS TX.POST TX.VHRN US.MNTX Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 2.85e+21 dyne-cm Mw = 3.57 Z = 6 km Plane Strike Dip Rake NP1 76 52 -117 NP2 295 45 -60 Principal Axes: Axis Value Plunge Azimuth T 2.85e+21 4 184 N 0.00e+00 21 93 P -2.85e+21 69 284 Moment Tensor: (dyne-cm) Component Value Mxx 2.80e+21 Mxy 2.98e+20 Mxz -4.26e+20 Myy -3.31e+20 Myz 9.14e+20 Mzz -2.47e+21 ############## ###################### ############################ ############################## #####------------################# #----------------------############# ---------------------------########### -------------------------------######### ---------------------------------####### -------------- ------------------#####-- -------------- P --------------------##--- -------------- ------------------------- ------------------------------------###--- --------------------------------######-- ##---------------------------##########- ####--------------------############## ############--###################### ################################## ############################## ############################ ######## ########### #### T ####### Global CMT Convention Moment Tensor: R T P -2.47e+21 -4.26e+20 -9.14e+20 -4.26e+20 2.80e+21 -2.98e+20 -9.14e+20 -2.98e+20 -3.31e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210401194955/index.html |
STK = 295 DIP = 45 RAKE = -60 MW = 3.57 HS = 6.0
The NDK file is 20210401194955.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2021/04/01 19:49:55:0 31.68 -104.39 6.5 4.0 Texas Stations used: EP.KIDD GM.NMP02 GM.NMP25 GM.NMP41 GM.NMP53 SC.Y22A TX.ALPN TX.MB05 TX.MNHN TX.ODSA TX.OZNA TX.PB01 TX.PB05 TX.PB07 TX.PB11 TX.PB28 TX.PECS TX.POST TX.VHRN US.MNTX Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 2.85e+21 dyne-cm Mw = 3.57 Z = 6 km Plane Strike Dip Rake NP1 76 52 -117 NP2 295 45 -60 Principal Axes: Axis Value Plunge Azimuth T 2.85e+21 4 184 N 0.00e+00 21 93 P -2.85e+21 69 284 Moment Tensor: (dyne-cm) Component Value Mxx 2.80e+21 Mxy 2.98e+20 Mxz -4.26e+20 Myy -3.31e+20 Myz 9.14e+20 Mzz -2.47e+21 ############## ###################### ############################ ############################## #####------------################# #----------------------############# ---------------------------########### -------------------------------######### ---------------------------------####### -------------- ------------------#####-- -------------- P --------------------##--- -------------- ------------------------- ------------------------------------###--- --------------------------------######-- ##---------------------------##########- ####--------------------############## ############--###################### ################################## ############################## ############################ ######## ########### #### T ####### Global CMT Convention Moment Tensor: R T P -2.47e+21 -4.26e+20 -9.14e+20 -4.26e+20 2.80e+21 -2.98e+20 -9.14e+20 -2.98e+20 -3.31e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210401194955/index.html |
(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 245 60 -5 3.22 0.2768 WVFGRD96 2.0 235 30 -5 3.45 0.3363 WVFGRD96 3.0 240 30 0 3.49 0.4229 WVFGRD96 4.0 280 30 -75 3.56 0.4824 WVFGRD96 5.0 285 40 -75 3.57 0.5330 WVFGRD96 6.0 295 45 -60 3.57 0.5415 WVFGRD96 7.0 300 45 -55 3.58 0.5254 WVFGRD96 8.0 295 40 -60 3.66 0.5226 WVFGRD96 9.0 300 40 -55 3.65 0.4879 WVFGRD96 10.0 330 60 35 3.62 0.4610 WVFGRD96 11.0 330 60 30 3.63 0.4440 WVFGRD96 12.0 325 65 25 3.64 0.4246 WVFGRD96 13.0 325 65 25 3.65 0.4057 WVFGRD96 14.0 325 70 20 3.66 0.3858 WVFGRD96 15.0 325 70 20 3.67 0.3685 WVFGRD96 16.0 145 70 25 3.67 0.3534 WVFGRD96 17.0 145 70 20 3.68 0.3387 WVFGRD96 18.0 145 70 20 3.69 0.3254 WVFGRD96 19.0 145 70 20 3.70 0.3133 WVFGRD96 20.0 145 70 20 3.70 0.3030 WVFGRD96 21.0 145 70 20 3.71 0.2935 WVFGRD96 22.0 145 70 20 3.71 0.2851 WVFGRD96 23.0 145 65 20 3.72 0.2802 WVFGRD96 24.0 145 65 20 3.73 0.2770 WVFGRD96 25.0 145 65 20 3.74 0.2744 WVFGRD96 26.0 145 65 20 3.74 0.2724 WVFGRD96 27.0 145 65 20 3.75 0.2698 WVFGRD96 28.0 230 70 -15 3.75 0.2678 WVFGRD96 29.0 230 70 -15 3.76 0.2731
The best solution is
WVFGRD96 6.0 295 45 -60 3.57 0.5415
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: