USGS/SLU Moment Tensor Solution ENS 2021/02/05 17:48:43:0 36.31 -97.48 5.0 4.1 Oklahoma Stations used: GS.KS28 GS.OK029 GS.OK038 GS.OK048 GS.OK052 N4.R32B N4.T35B N4.TUL3 N4.U38B O2.ALVA O2.ARC2 O2.CALT O2.CHAN O2.CRES O2.DOVR O2.DRIP O2.DRUM O2.DUST O2.ERNS O2.FREE O2.FW03 O2.FW06 O2.GORE O2.MRSH O2.PERK O2.PERY O2.PW05 O2.PW09 O2.PW18 O2.SC07 O2.SC11 O2.SC13 O2.SC15 O2.SC16 O2.SC19 O2.SC20 O2.SMNL O2.STIG OK.AMES OK.CHOK OK.CROK OK.CSTR OK.DEOK OK.FNO OK.HTCH OK.MOOR OK.NOKA OK.W35A TX.DRZT US.CBKS US.KSU1 Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.78e+22 dyne-cm Mw = 4.10 Z = 5 km Plane Strike Dip Rake NP1 45 85 -175 NP2 315 85 -5 Principal Axes: Axis Value Plunge Azimuth T 1.78e+22 0 180 N 0.00e+00 83 90 P -1.78e+22 7 270 Moment Tensor: (dyne-cm) Component Value Mxx 1.78e+22 Mxy 1.35e+20 Mxz -1.25e+19 Myy -1.75e+22 Myz 2.17e+21 Mzz -2.69e+20 ############## ###################### ############################ -############################- ------########################---- ---------####################------- ------------#################--------- ---------------#############------------ -----------------#########-------------- -----------------######---------------- P -------------------##------------------ -------------------##------------------ --------------------######---------------- -----------------#########-------------- ---------------#############------------ ------------#################--------- ---------####################------- ------########################---- -############################- ############################ ######### ########## ##### T ###### Global CMT Convention Moment Tensor: R T P -2.69e+20 -1.25e+19 -2.17e+21 -1.25e+19 1.78e+22 -1.35e+20 -2.17e+21 -1.35e+20 -1.75e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210205174843/index.html |
STK = 315 DIP = 85 RAKE = -5 MW = 4.10 HS = 5.0
The NDK file is 20210205174843.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2021/02/05 17:48:43:0 36.31 -97.48 5.0 4.1 Oklahoma Stations used: GS.KS28 GS.OK029 GS.OK038 GS.OK048 GS.OK052 N4.R32B N4.T35B N4.TUL3 N4.U38B O2.ALVA O2.ARC2 O2.CALT O2.CHAN O2.CRES O2.DOVR O2.DRIP O2.DRUM O2.DUST O2.ERNS O2.FREE O2.FW03 O2.FW06 O2.GORE O2.MRSH O2.PERK O2.PERY O2.PW05 O2.PW09 O2.PW18 O2.SC07 O2.SC11 O2.SC13 O2.SC15 O2.SC16 O2.SC19 O2.SC20 O2.SMNL O2.STIG OK.AMES OK.CHOK OK.CROK OK.CSTR OK.DEOK OK.FNO OK.HTCH OK.MOOR OK.NOKA OK.W35A TX.DRZT US.CBKS US.KSU1 Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.78e+22 dyne-cm Mw = 4.10 Z = 5 km Plane Strike Dip Rake NP1 45 85 -175 NP2 315 85 -5 Principal Axes: Axis Value Plunge Azimuth T 1.78e+22 0 180 N 0.00e+00 83 90 P -1.78e+22 7 270 Moment Tensor: (dyne-cm) Component Value Mxx 1.78e+22 Mxy 1.35e+20 Mxz -1.25e+19 Myy -1.75e+22 Myz 2.17e+21 Mzz -2.69e+20 ############## ###################### ############################ -############################- ------########################---- ---------####################------- ------------#################--------- ---------------#############------------ -----------------#########-------------- -----------------######---------------- P -------------------##------------------ -------------------##------------------ --------------------######---------------- -----------------#########-------------- ---------------#############------------ ------------#################--------- ---------####################------- ------########################---- -############################- ############################ ######### ########## ##### T ###### Global CMT Convention Moment Tensor: R T P -2.69e+20 -1.25e+19 -2.17e+21 -1.25e+19 1.78e+22 -1.35e+20 -2.17e+21 -1.35e+20 -1.75e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210205174843/index.html |
Regional Moment Tensor (Mwr) Moment 2.587e+15 N-m Magnitude 4.21 Mwr Depth 3.0 km Percent DC 64% Half Duration - Catalog US Data Source US 2 Contributor US 2 Nodal Planes Plane Strike Dip Rake NP1 314 89 8 NP2 224 82 179 Principal Axes Axis Value Plunge Azimuth T 2.802e+15 N-m 7 179 N -0.504e+15 N-m 82 322 P -2.298e+15 N-m 5 89 |
(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 315 75 -10 3.83 0.4423 WVFGRD96 2.0 140 85 20 3.97 0.5500 WVFGRD96 3.0 140 90 10 4.02 0.6007 WVFGRD96 4.0 315 80 -10 4.07 0.6247 WVFGRD96 5.0 315 85 -5 4.10 0.6282 WVFGRD96 6.0 315 85 -5 4.13 0.6219 WVFGRD96 7.0 315 85 -5 4.16 0.6108 WVFGRD96 8.0 315 80 -5 4.20 0.5967 WVFGRD96 9.0 315 80 -5 4.21 0.5714 WVFGRD96 10.0 315 80 -5 4.23 0.5455 WVFGRD96 11.0 315 85 -5 4.24 0.5207 WVFGRD96 12.0 315 85 -5 4.25 0.4972 WVFGRD96 13.0 315 85 -5 4.26 0.4748 WVFGRD96 14.0 135 85 -10 4.27 0.4562 WVFGRD96 15.0 135 85 -10 4.28 0.4389 WVFGRD96 16.0 135 85 -10 4.29 0.4222 WVFGRD96 17.0 135 85 -10 4.29 0.4061 WVFGRD96 18.0 315 90 10 4.30 0.3891 WVFGRD96 19.0 135 85 -10 4.31 0.3771 WVFGRD96 20.0 315 90 10 4.31 0.3625 WVFGRD96 21.0 315 90 10 4.32 0.3522 WVFGRD96 22.0 135 85 -10 4.32 0.3449 WVFGRD96 23.0 135 85 -10 4.33 0.3375 WVFGRD96 24.0 135 80 -10 4.33 0.3309 WVFGRD96 25.0 135 85 -10 4.34 0.3259 WVFGRD96 26.0 135 85 -10 4.34 0.3214 WVFGRD96 27.0 225 80 5 4.34 0.3192 WVFGRD96 28.0 225 80 0 4.35 0.3258 WVFGRD96 29.0 225 85 5 4.36 0.3328
The best solution is
WVFGRD96 5.0 315 85 -5 4.10 0.6282
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: