USGS/SLU Moment Tensor Solution ENS 2021/01/25 22:02:00:0 60.24 -145.94 16.5 4.8 Alaska Stations used: AK.BARN AK.BMR AK.BRLK AK.CAPN AK.CNP AK.CRQ AK.CUT AK.DHY AK.DIV AK.DOT AK.EYAK AK.FIRE AK.GHO AK.GLB AK.GLI AK.GRNC AK.HIN AK.K24K AK.KAI AK.KLU AK.KNK AK.L22K AK.LOGN AK.M20K AK.M26K AK.M27K AK.MCAR AK.MCK AK.P23K AK.PAX AK.PWL AK.RAG AK.RC01 AK.RIDG AK.RND AK.SAW AK.SCM AK.SCRK AK.SKN AK.SLK AK.TGL AK.TRF AK.VRDI AT.MENT AT.PMR TA.L27K TA.M22K TA.O22K TA.O28M Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 2.45e+23 dyne-cm Mw = 4.86 Z = 19 km Plane Strike Dip Rake NP1 245 80 -80 NP2 20 14 -135 Principal Axes: Axis Value Plunge Azimuth T 2.45e+23 34 326 N 0.00e+00 10 63 P -2.45e+23 54 167 Moment Tensor: (dyne-cm) Component Value Mxx 3.58e+22 Mxy -5.87e+22 Mxz 2.09e+23 Myy 4.69e+22 Myz -8.93e+22 Mzz -8.27e+22 ############## #####################- ##########################-- ###### ####################- ######## T #####################-- ######### ######################-- ###################################-## #############################---------## ########################--------------## #####################------------------### #################----------------------### ##############-------------------------### ##########-----------------------------### ######-------------------------------### ####---------------- --------------### #------------------ P -------------### ------------------ ------------### -------------------------------### ---------------------------### ------------------------#### ------------------#### ---------##### Global CMT Convention Moment Tensor: R T P -8.27e+22 2.09e+23 8.93e+22 2.09e+23 3.58e+22 5.87e+22 8.93e+22 5.87e+22 4.69e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210125220200/index.html |
STK = 245 DIP = 80 RAKE = -80 MW = 4.86 HS = 19.0
The NDK file is 20210125220200.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2021/01/25 22:02:00:0 60.24 -145.94 16.5 4.8 Alaska Stations used: AK.BARN AK.BMR AK.BRLK AK.CAPN AK.CNP AK.CRQ AK.CUT AK.DHY AK.DIV AK.DOT AK.EYAK AK.FIRE AK.GHO AK.GLB AK.GLI AK.GRNC AK.HIN AK.K24K AK.KAI AK.KLU AK.KNK AK.L22K AK.LOGN AK.M20K AK.M26K AK.M27K AK.MCAR AK.MCK AK.P23K AK.PAX AK.PWL AK.RAG AK.RC01 AK.RIDG AK.RND AK.SAW AK.SCM AK.SCRK AK.SKN AK.SLK AK.TGL AK.TRF AK.VRDI AT.MENT AT.PMR TA.L27K TA.M22K TA.O22K TA.O28M Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 2.45e+23 dyne-cm Mw = 4.86 Z = 19 km Plane Strike Dip Rake NP1 245 80 -80 NP2 20 14 -135 Principal Axes: Axis Value Plunge Azimuth T 2.45e+23 34 326 N 0.00e+00 10 63 P -2.45e+23 54 167 Moment Tensor: (dyne-cm) Component Value Mxx 3.58e+22 Mxy -5.87e+22 Mxz 2.09e+23 Myy 4.69e+22 Myz -8.93e+22 Mzz -8.27e+22 ############## #####################- ##########################-- ###### ####################- ######## T #####################-- ######### ######################-- ###################################-## #############################---------## ########################--------------## #####################------------------### #################----------------------### ##############-------------------------### ##########-----------------------------### ######-------------------------------### ####---------------- --------------### #------------------ P -------------### ------------------ ------------### -------------------------------### ---------------------------### ------------------------#### ------------------#### ---------##### Global CMT Convention Moment Tensor: R T P -8.27e+22 2.09e+23 8.93e+22 2.09e+23 3.58e+22 5.87e+22 8.93e+22 5.87e+22 4.69e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210125220200/index.html |
Regional Moment Tensor (Mwr) Moment 3.246e+16 N-m Magnitude 4.94 Mwr Depth 9.0 km Percent DC 85% Half Duration - Catalog US Data Source US 3 Contributor US 3 Nodal Planes Plane Strike Dip Rake NP1 197 3 41 NP2 66 88 92 Principal Axes Axis Value Plunge Azimuth T 3.108e+16 N-m 47 338 N 0.260e+16 N-m 2 246 P -3.368e+16 N-m 43 153 |
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 55 45 90 4.33 0.2024 WVFGRD96 2.0 235 45 90 4.49 0.2727 WVFGRD96 3.0 55 55 -90 4.53 0.2339 WVFGRD96 4.0 75 85 -60 4.52 0.2573 WVFGRD96 5.0 165 15 10 4.55 0.3128 WVFGRD96 6.0 170 15 15 4.57 0.3680 WVFGRD96 7.0 170 15 15 4.58 0.4134 WVFGRD96 8.0 170 15 15 4.67 0.4459 WVFGRD96 9.0 170 15 15 4.69 0.4852 WVFGRD96 10.0 165 15 10 4.71 0.5189 WVFGRD96 11.0 140 15 -15 4.73 0.5469 WVFGRD96 12.0 140 15 -15 4.75 0.5707 WVFGRD96 13.0 140 15 -15 4.76 0.5898 WVFGRD96 14.0 135 15 -20 4.78 0.6053 WVFGRD96 15.0 140 20 -20 4.80 0.6169 WVFGRD96 16.0 245 80 -80 4.82 0.6274 WVFGRD96 17.0 245 80 -80 4.83 0.6334 WVFGRD96 18.0 245 80 -80 4.85 0.6364 WVFGRD96 19.0 245 80 -80 4.86 0.6365 WVFGRD96 20.0 245 80 -80 4.87 0.6344 WVFGRD96 21.0 245 80 -80 4.89 0.6309 WVFGRD96 22.0 245 80 -80 4.90 0.6247 WVFGRD96 23.0 245 80 -80 4.91 0.6165 WVFGRD96 24.0 245 80 -80 4.92 0.6068 WVFGRD96 25.0 245 80 -80 4.93 0.5959 WVFGRD96 26.0 245 80 -80 4.94 0.5840 WVFGRD96 27.0 245 80 -80 4.95 0.5703 WVFGRD96 28.0 245 80 -80 4.96 0.5559 WVFGRD96 29.0 245 80 -80 4.96 0.5399
The best solution is
WVFGRD96 19.0 245 80 -80 4.86 0.6365
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: