USGS/SLU Moment Tensor Solution ENS 2021/01/03 05:35:27:0 42.56 -111.45 5.1 4.2 Idaho Stations used: GS.ID12 IE.BCYI IW.DLMT IW.FLWY IW.SNOW MB.BUT N4.K22A N4.O20A US.AHID US.BOZ US.BW06 US.ELK US.HWUT UU.BGU UU.BRPU UU.BSUT UU.CTU UU.CVRU UU.NLU UU.RDMU UU.SPU UU.SRU UU.SVWY UU.TCU WY.YHB WY.YHH WY.YMR Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 2.34e+22 dyne-cm Mw = 4.18 Z = 8 km Plane Strike Dip Rake NP1 65 90 -15 NP2 155 75 -180 Principal Axes: Axis Value Plunge Azimuth T 2.34e+22 11 111 N 0.00e+00 75 245 P -2.34e+22 11 19 Moment Tensor: (dyne-cm) Component Value Mxx -1.73e+22 Mxy -1.46e+22 Mxz -5.50e+21 Myy 1.73e+22 Myz 2.56e+21 Mzz 5.30e+14 ------------ ##-------------- P --- #####-------------- ------ #######----------------------- #########------------------------- ##########-------------------------- ############-------------------------# #############---------------------###### ##############----------------########## ################-----------############### ################-------################### #################--####################### ###############---######################## ##########--------################## # ######-------------################# T # #------------------################ -------------------################# --------------------############## -------------------########### -------------------######### ------------------#### -------------- Global CMT Convention Moment Tensor: R T P 5.30e+14 -5.50e+21 -2.56e+21 -5.50e+21 -1.73e+22 1.46e+22 -2.56e+21 1.46e+22 1.73e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210103053527/index.html |
STK = 65 DIP = 90 RAKE = -15 MW = 4.18 HS = 8.0
The NDK file is 20210103053527.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2021/01/03 05:35:27:0 42.56 -111.45 5.1 4.2 Idaho Stations used: GS.ID12 IE.BCYI IW.DLMT IW.FLWY IW.SNOW MB.BUT N4.K22A N4.O20A US.AHID US.BOZ US.BW06 US.ELK US.HWUT UU.BGU UU.BRPU UU.BSUT UU.CTU UU.CVRU UU.NLU UU.RDMU UU.SPU UU.SRU UU.SVWY UU.TCU WY.YHB WY.YHH WY.YMR Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 2.34e+22 dyne-cm Mw = 4.18 Z = 8 km Plane Strike Dip Rake NP1 65 90 -15 NP2 155 75 -180 Principal Axes: Axis Value Plunge Azimuth T 2.34e+22 11 111 N 0.00e+00 75 245 P -2.34e+22 11 19 Moment Tensor: (dyne-cm) Component Value Mxx -1.73e+22 Mxy -1.46e+22 Mxz -5.50e+21 Myy 1.73e+22 Myz 2.56e+21 Mzz 5.30e+14 ------------ ##-------------- P --- #####-------------- ------ #######----------------------- #########------------------------- ##########-------------------------- ############-------------------------# #############---------------------###### ##############----------------########## ################-----------############### ################-------################### #################--####################### ###############---######################## ##########--------################## # ######-------------################# T # #------------------################ -------------------################# --------------------############## -------------------########### -------------------######### ------------------#### -------------- Global CMT Convention Moment Tensor: R T P 5.30e+14 -5.50e+21 -2.56e+21 -5.50e+21 -1.73e+22 1.46e+22 -2.56e+21 1.46e+22 1.73e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210103053527/index.html |
Regional Moment Tensor (Mwr) Moment 2.479e+15 N-m Magnitude 4.20 Mwr Depth 8.0 km Percent DC 65% Half Duration - Catalog US Data Source US 1 Contributor US 1 Nodal Planes Plane Strike Dip Rake NP1 158 82 -154 NP2 64 65 -9 Principal Axes Axis Value Plunge Azimuth T 2.682e+15 N-m 12 289 N -0.475e+15 N-m 63 174 P -2.207e+15 N-m 23 24 |
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 60 65 -20 3.91 0.4351 WVFGRD96 2.0 55 65 -35 4.05 0.5491 WVFGRD96 3.0 60 70 -25 4.06 0.5945 WVFGRD96 4.0 60 75 -20 4.08 0.6229 WVFGRD96 5.0 65 90 -20 4.10 0.6427 WVFGRD96 6.0 65 90 -15 4.13 0.6565 WVFGRD96 7.0 65 90 -15 4.15 0.6635 WVFGRD96 8.0 65 90 -15 4.18 0.6646 WVFGRD96 9.0 65 90 -15 4.20 0.6569 WVFGRD96 10.0 65 90 -15 4.21 0.6454 WVFGRD96 11.0 65 90 -15 4.23 0.6348 WVFGRD96 12.0 65 90 -15 4.24 0.6251 WVFGRD96 13.0 65 90 -15 4.25 0.6144 WVFGRD96 14.0 65 85 -10 4.26 0.6026 WVFGRD96 15.0 65 85 -10 4.27 0.5901 WVFGRD96 16.0 65 85 -10 4.27 0.5761 WVFGRD96 17.0 65 80 -5 4.28 0.5620 WVFGRD96 18.0 65 80 -5 4.29 0.5482 WVFGRD96 19.0 245 80 -10 4.29 0.5333 WVFGRD96 20.0 245 80 -10 4.30 0.5198 WVFGRD96 21.0 245 75 -10 4.31 0.5077 WVFGRD96 22.0 245 75 -10 4.31 0.4941 WVFGRD96 23.0 245 75 -10 4.32 0.4806 WVFGRD96 24.0 245 75 -10 4.32 0.4678 WVFGRD96 25.0 245 75 -10 4.33 0.4541 WVFGRD96 26.0 245 75 -10 4.33 0.4423 WVFGRD96 27.0 245 75 -10 4.34 0.4297 WVFGRD96 28.0 245 75 -10 4.34 0.4194 WVFGRD96 29.0 245 75 -5 4.35 0.4083
The best solution is
WVFGRD96 8.0 65 90 -15 4.18 0.6646
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: