Location

Location ANSS

2020/01/20 16:11:58 59.812 -136.057 10.8 3.8 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2020/01/20 16:11:58:0  59.81 -136.06  10.8 3.8 Alaska
 
 Stations used:
   AK.BARN AK.BCP AK.LOGN AK.PIN AK.S31K AK.SSP AT.SIT AT.SKAG 
   AT.YKU2 CN.WHY TA.M29M TA.M30M TA.M31M TA.N30M TA.N31M 
   TA.O28M TA.O29M TA.O30N TA.P32M TA.R33M TA.S34M 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 5.13e+21 dyne-cm
  Mw = 3.74 
  Z  = 13 km
  Plane   Strike  Dip  Rake
   NP1      198    71   159
   NP2      295    70    20
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.13e+21     28     156
    N   0.00e+00     62     338
    P  -5.13e+21      1     247

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.54e+21
       Mxy    -3.34e+21
       Mxz    -1.91e+21
       Myy    -3.67e+21
       Myz     9.26e+20
       Mzz     1.13e+21
                                                     
                                                     
                                                     
                                                     
                     #############-                  
                 ###############-------              
              #################-----------           
             ################--------------          
           #################-----------------        
          #################-------------------       
         ----------#######---------------------      
        -----------------#----------------------     
        -----------------#####------------------     
       -----------------##########---------------    
       ----------------##############------------    
       ----------------################----------    
       ---------------####################-------    
        --------------######################----     
           ----------########################---     
         P ----------##########################      
           ----------#########################       
           ----------############   #########        
             --------############ T #######          
              -------############   ######           
                 ----##################              
                     -#############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.13e+21  -1.91e+21  -9.26e+20 
 -1.91e+21   2.54e+21   3.34e+21 
 -9.26e+20   3.34e+21  -3.67e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200120161158/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 295
      DIP = 70
     RAKE = 20
       MW = 3.74
       HS = 13.0

The NDK file is 20200120161158.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2020/01/20 16:11:58:0  59.81 -136.06  10.8 3.8 Alaska
 
 Stations used:
   AK.BARN AK.BCP AK.LOGN AK.PIN AK.S31K AK.SSP AT.SIT AT.SKAG 
   AT.YKU2 CN.WHY TA.M29M TA.M30M TA.M31M TA.N30M TA.N31M 
   TA.O28M TA.O29M TA.O30N TA.P32M TA.R33M TA.S34M 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 5.13e+21 dyne-cm
  Mw = 3.74 
  Z  = 13 km
  Plane   Strike  Dip  Rake
   NP1      198    71   159
   NP2      295    70    20
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.13e+21     28     156
    N   0.00e+00     62     338
    P  -5.13e+21      1     247

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.54e+21
       Mxy    -3.34e+21
       Mxz    -1.91e+21
       Myy    -3.67e+21
       Myz     9.26e+20
       Mzz     1.13e+21
                                                     
                                                     
                                                     
                                                     
                     #############-                  
                 ###############-------              
              #################-----------           
             ################--------------          
           #################-----------------        
          #################-------------------       
         ----------#######---------------------      
        -----------------#----------------------     
        -----------------#####------------------     
       -----------------##########---------------    
       ----------------##############------------    
       ----------------################----------    
       ---------------####################-------    
        --------------######################----     
           ----------########################---     
         P ----------##########################      
           ----------#########################       
           ----------############   #########        
             --------############ T #######          
              -------############   ######           
                 ----##################              
                     -#############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.13e+21  -1.91e+21  -9.26e+20 
 -1.91e+21   2.54e+21   3.34e+21 
 -9.26e+20   3.34e+21  -3.67e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200120161158/index.html
	

Magnitudes

mLg Magnitude


(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
br c 0.12 0.25 n 4 p 2
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   105    85    -5   3.30 0.2465
WVFGRD96    2.0   285    90     5   3.45 0.3764
WVFGRD96    3.0   285    90     5   3.50 0.4117
WVFGRD96    4.0   290    75    10   3.55 0.4289
WVFGRD96    5.0   110    70    20   3.58 0.4451
WVFGRD96    6.0   110    70    20   3.60 0.4579
WVFGRD96    7.0   110    75    20   3.62 0.4661
WVFGRD96    8.0   110    70    20   3.65 0.4727
WVFGRD96    9.0   295    70    25   3.68 0.4772
WVFGRD96   10.0   295    70    25   3.70 0.4804
WVFGRD96   11.0   290    70    20   3.70 0.4827
WVFGRD96   12.0   295    70    20   3.73 0.4843
WVFGRD96   13.0   295    70    20   3.74 0.4853
WVFGRD96   14.0   295    70    20   3.75 0.4851
WVFGRD96   15.0   295    70    20   3.77 0.4839
WVFGRD96   16.0   295    75    20   3.78 0.4827
WVFGRD96   17.0   295    75    20   3.79 0.4806
WVFGRD96   18.0   295    75    20   3.81 0.4772
WVFGRD96   19.0   295    75    20   3.82 0.4733
WVFGRD96   20.0   295    75    20   3.83 0.4694
WVFGRD96   21.0   295    75    20   3.84 0.4648
WVFGRD96   22.0   295    75    20   3.85 0.4591
WVFGRD96   23.0   295    75    20   3.86 0.4525
WVFGRD96   24.0   295    75    20   3.87 0.4461
WVFGRD96   25.0   295    75    20   3.88 0.4386
WVFGRD96   26.0   295    75    20   3.89 0.4309
WVFGRD96   27.0   295    75    20   3.89 0.4222
WVFGRD96   28.0   295    75    20   3.90 0.4132
WVFGRD96   29.0   295    75    20   3.91 0.4037

The best solution is

WVFGRD96   13.0   295    70    20   3.74 0.4853

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
br c 0.12 0.25 n 4 p 2
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Jan 20 12:15:25 CST 2020