Location

Location ANSS

2019/12/01 12:27:52 59.613 -152.789 89.2 4.5 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2019/12/01 12:27:52:0  59.61 -152.79  89.2 4.5 Alaska
 
 Stations used:
   AK.BRLK AK.CNP AK.HOM AK.KLU AK.L19K AK.M20K AK.N18K 
   AK.N19K AK.O18K AK.O19K AK.P23K AK.Q19K AK.RC01 AK.SKN 
   AK.SLK AK.SWD AV.ILSW AV.RED AV.STLK II.KDAK TA.O22K 
   TA.P18K TA.P19K TA.Q20K 
 
 Filtering commands used:
   cut o DIST/3.4 -40 o DIST/3.4 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 8.71e+22 dyne-cm
  Mw = 4.56 
  Z  = 90 km
  Plane   Strike  Dip  Rake
   NP1       95    65    35
   NP2      349    59   150
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   8.71e+22     42     314
    N   0.00e+00     48     126
    P  -8.71e+22      4     220

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.67e+22
       Mxy    -6.70e+22
       Mxz     3.46e+22
       Myy    -1.15e+22
       Myz    -2.72e+22
       Mzz     3.83e+22
                                                     
                                                     
                                                     
                                                     
                     ####----------                  
                 ###########-----------              
              ###############-------------           
             ##################------------          
           #####################-------------        
          ########   ############-------------       
         ######### T #############-------------      
        ##########   #############--------------     
        ###########################-------------     
       #############################-------------    
       -############################-------------    
       ---##########################-------------    
       -------######################-----------##    
        ----------##################-------#####     
        ----------------------###----###########     
         ---------------------------###########      
          --------------------------##########       
           -------------------------#########        
             -   ------------------########          
               P ------------------#######           
                 -----------------#####              
                     ------------##                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  3.83e+22   3.46e+22   2.72e+22 
  3.46e+22  -2.67e+22   6.70e+22 
  2.72e+22   6.70e+22  -1.15e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20191201122752/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 95
      DIP = 65
     RAKE = 35
       MW = 4.56
       HS = 90.0

The NDK file is 20191201122752.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2019/12/01 12:27:52:0  59.61 -152.79  89.2 4.5 Alaska
 
 Stations used:
   AK.BRLK AK.CNP AK.HOM AK.KLU AK.L19K AK.M20K AK.N18K 
   AK.N19K AK.O18K AK.O19K AK.P23K AK.Q19K AK.RC01 AK.SKN 
   AK.SLK AK.SWD AV.ILSW AV.RED AV.STLK II.KDAK TA.O22K 
   TA.P18K TA.P19K TA.Q20K 
 
 Filtering commands used:
   cut o DIST/3.4 -40 o DIST/3.4 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 8.71e+22 dyne-cm
  Mw = 4.56 
  Z  = 90 km
  Plane   Strike  Dip  Rake
   NP1       95    65    35
   NP2      349    59   150
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   8.71e+22     42     314
    N   0.00e+00     48     126
    P  -8.71e+22      4     220

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.67e+22
       Mxy    -6.70e+22
       Mxz     3.46e+22
       Myy    -1.15e+22
       Myz    -2.72e+22
       Mzz     3.83e+22
                                                     
                                                     
                                                     
                                                     
                     ####----------                  
                 ###########-----------              
              ###############-------------           
             ##################------------          
           #####################-------------        
          ########   ############-------------       
         ######### T #############-------------      
        ##########   #############--------------     
        ###########################-------------     
       #############################-------------    
       -############################-------------    
       ---##########################-------------    
       -------######################-----------##    
        ----------##################-------#####     
        ----------------------###----###########     
         ---------------------------###########      
          --------------------------##########       
           -------------------------#########        
             -   ------------------########          
               P ------------------#######           
                 -----------------#####              
                     ------------##                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  3.83e+22   3.46e+22   2.72e+22 
  3.46e+22  -2.67e+22   6.70e+22 
  2.72e+22   6.70e+22  -1.15e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20191201122752/index.html
	
Regional Moment Tensor (Mwr)
Moment 8.385e+15 N-m
Magnitude 4.55 Mwr
Depth 90.0 km
Percent DC 77%
Half Duration -
Catalog US
Data Source US 3
Contributor US 3

Nodal Planes
Plane Strike Dip Rake
NP1 348 58 154
NP2 92 68 35

Principal Axes
Axis Value Plunge Azimuth
T 8.857e+15 N-m 39 313
N -1.041e+15 N-m 50 121
P -7.816e+15 N-m 6 218


        

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.4 -40 o DIST/3.4 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   130    45   -95   3.74 0.2399
WVFGRD96    4.0   355    70   -25   3.72 0.2556
WVFGRD96    6.0    -5    60   -20   3.79 0.2835
WVFGRD96    8.0   355    55   -20   3.88 0.2971
WVFGRD96   10.0    -5    60   -20   3.92 0.2955
WVFGRD96   12.0    95    70    25   3.96 0.3099
WVFGRD96   14.0    90    75    20   4.00 0.3226
WVFGRD96   16.0    90    75    20   4.03 0.3329
WVFGRD96   18.0    90    75    20   4.06 0.3438
WVFGRD96   20.0    90    75    20   4.09 0.3585
WVFGRD96   22.0    90    75    20   4.12 0.3757
WVFGRD96   24.0    90    75    20   4.15 0.3938
WVFGRD96   26.0    90    75    20   4.17 0.4123
WVFGRD96   28.0    95    75    20   4.19 0.4298
WVFGRD96   30.0    95    75    20   4.21 0.4463
WVFGRD96   32.0    95    70    25   4.23 0.4630
WVFGRD96   34.0    95    70    25   4.24 0.4738
WVFGRD96   36.0    95    70    25   4.26 0.4904
WVFGRD96   38.0    95    70    25   4.29 0.5058
WVFGRD96   40.0   100    65    30   4.36 0.5348
WVFGRD96   42.0   100    65    30   4.39 0.5413
WVFGRD96   44.0   100    65    30   4.41 0.5503
WVFGRD96   46.0   100    65    30   4.42 0.5548
WVFGRD96   48.0    95    65    30   4.43 0.5649
WVFGRD96   50.0    95    65    30   4.45 0.5772
WVFGRD96   52.0    95    65    30   4.46 0.5908
WVFGRD96   54.0    95    65    30   4.47 0.6073
WVFGRD96   56.0    95    65    30   4.48 0.6238
WVFGRD96   58.0    95    65    35   4.49 0.6353
WVFGRD96   60.0    95    65    35   4.50 0.6498
WVFGRD96   62.0    95    65    35   4.50 0.6613
WVFGRD96   64.0    95    65    40   4.51 0.6715
WVFGRD96   66.0    95    65    40   4.51 0.6821
WVFGRD96   68.0    95    65    35   4.52 0.6914
WVFGRD96   70.0    95    65    35   4.52 0.6992
WVFGRD96   72.0    95    65    35   4.53 0.7043
WVFGRD96   74.0    95    65    35   4.53 0.7076
WVFGRD96   76.0    95    65    35   4.54 0.7116
WVFGRD96   78.0    95    65    35   4.54 0.7146
WVFGRD96   80.0    95    65    35   4.54 0.7184
WVFGRD96   82.0    95    65    35   4.55 0.7204
WVFGRD96   84.0    95    65    35   4.55 0.7217
WVFGRD96   86.0    95    65    35   4.55 0.7223
WVFGRD96   88.0    95    65    35   4.56 0.7251
WVFGRD96   90.0    95    65    35   4.56 0.7258
WVFGRD96   92.0    95    65    35   4.56 0.7238
WVFGRD96   94.0    95    65    35   4.57 0.7254
WVFGRD96   96.0    95    65    35   4.57 0.7234
WVFGRD96   98.0    95    65    35   4.57 0.7204
WVFGRD96  100.0    95    65    35   4.58 0.7192
WVFGRD96  102.0    95    65    35   4.58 0.7168
WVFGRD96  104.0    95    65    35   4.58 0.7164
WVFGRD96  106.0    95    65    35   4.59 0.7139
WVFGRD96  108.0    95    65    35   4.59 0.7094
WVFGRD96  110.0    95    65    35   4.59 0.7082
WVFGRD96  112.0    95    65    35   4.60 0.7038
WVFGRD96  114.0    95    65    35   4.60 0.7016
WVFGRD96  116.0    95    65    35   4.60 0.6952
WVFGRD96  118.0    95    65    35   4.61 0.6944

The best solution is

WVFGRD96   90.0    95    65    35   4.56 0.7258

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.4 -40 o DIST/3.4 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Sun Dec 1 10:02:34 CST 2019