USGS/SLU Moment Tensor Solution ENS 2019/01/16 03:34:30:0 37.05 -97.37 2.5 4.0 Kansas Stations used: AG.HHAR GS.KAN01 GS.KAN05 GS.KAN08 GS.KAN12 GS.KAN14 GS.KAN17 GS.OK029 GS.OK031 GS.OK038 GS.OK051 GS.OK052 N4.R32B N4.S39B N4.T35B N4.TUL3 N4.U38B O2.CHAN O2.DOVR O2.DRUM O2.PERK O2.PERY O2.POCA O2.SHWN OK.CHOK OK.CROK OK.DEOK OK.FNO OK.NOKA OK.W35A TX.PH01 US.CBKS US.KSU1 US.MIAR Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.04 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 1.30e+22 dyne-cm Mw = 4.01 Z = 3 km Plane Strike Dip Rake NP1 140 85 -20 NP2 232 70 -175 Principal Axes: Axis Value Plunge Azimuth T 1.30e+22 10 188 N 0.00e+00 69 307 P -1.30e+22 18 94 Moment Tensor: (dyne-cm) Component Value Mxx 1.23e+22 Mxy 2.50e+21 Mxz -2.00e+21 Myy -1.16e+22 Myz -4.05e+21 Mzz -7.74e+20 ############## ###################### -########################### ---########################### ------#######################----- --------#################----------- -----------###########---------------- -------------#######-------------------- ---------------###---------------------- ----------------#------------------------- --------------#####------------------ -- ------------########----------------- P -- -----------###########--------------- -- --------##############------------------ -------#################---------------- -----####################------------- ---######################----------- -#########################-------- ##########################---- ###########################- ####### ############ ### T ######## Global CMT Convention Moment Tensor: R T P -7.74e+20 -2.00e+21 4.05e+21 -2.00e+21 1.23e+22 -2.50e+21 4.05e+21 -2.50e+21 -1.16e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190116033430/index.html |
STK = 140 DIP = 85 RAKE = -20 MW = 4.01 HS = 3.0
The NDK file is 20190116033430.ndk It was not appropriate to use the WUS model here, The surface wave tomography indicated a dispersion that required a low velocity layer at short periods, but in the intermediate period range used for the RMT, the CUS model was better. This points out the need for a local model.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2019/01/16 03:34:30:0 37.05 -97.37 2.5 4.0 Kansas Stations used: AG.HHAR GS.KAN01 GS.KAN05 GS.KAN08 GS.KAN12 GS.KAN14 GS.KAN17 GS.OK029 GS.OK031 GS.OK038 GS.OK051 GS.OK052 N4.R32B N4.S39B N4.T35B N4.TUL3 N4.U38B O2.CHAN O2.DOVR O2.DRUM O2.PERK O2.PERY O2.POCA O2.SHWN OK.CHOK OK.CROK OK.DEOK OK.FNO OK.NOKA OK.W35A TX.PH01 US.CBKS US.KSU1 US.MIAR Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.04 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 1.30e+22 dyne-cm Mw = 4.01 Z = 3 km Plane Strike Dip Rake NP1 140 85 -20 NP2 232 70 -175 Principal Axes: Axis Value Plunge Azimuth T 1.30e+22 10 188 N 0.00e+00 69 307 P -1.30e+22 18 94 Moment Tensor: (dyne-cm) Component Value Mxx 1.23e+22 Mxy 2.50e+21 Mxz -2.00e+21 Myy -1.16e+22 Myz -4.05e+21 Mzz -7.74e+20 ############## ###################### -########################### ---########################### ------#######################----- --------#################----------- -----------###########---------------- -------------#######-------------------- ---------------###---------------------- ----------------#------------------------- --------------#####------------------ -- ------------########----------------- P -- -----------###########--------------- -- --------##############------------------ -------#################---------------- -----####################------------- ---######################----------- -#########################-------- ##########################---- ###########################- ####### ############ ### T ######## Global CMT Convention Moment Tensor: R T P -7.74e+20 -2.00e+21 4.05e+21 -2.00e+21 1.23e+22 -2.50e+21 4.05e+21 -2.50e+21 -1.16e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190116033430/index.html |
Regional Moment Tensor (Mwr) Moment 1.411e+15 N-m Magnitude 4.03 Mwr Depth 3.0 km Percent DC 95% Half Duration - Catalog US Data Source US 1 Contributor US 1 Nodal Planes Plane Strike Dip Rake NP1 232 52 -166 NP2 134 79 -38 Principal Axes Axis Value Plunge Azimuth T 1.392e+15 N-m 17 188 N 0.036e+15 N-m 50 300 P -1.429e+15 N-m 34 86 |
|
(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.04 n 3 lp c 0.08 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 140 80 -20 3.94 0.5201 WVFGRD96 2.0 140 80 -15 3.98 0.5453 WVFGRD96 3.0 140 85 -20 4.01 0.5467 WVFGRD96 4.0 320 90 25 4.03 0.5386 WVFGRD96 5.0 320 70 0 4.03 0.5315 WVFGRD96 6.0 320 70 0 4.03 0.5271 WVFGRD96 7.0 320 70 0 4.04 0.5235 WVFGRD96 8.0 320 70 0 4.05 0.5202 WVFGRD96 9.0 320 70 0 4.06 0.5158 WVFGRD96 10.0 320 70 0 4.07 0.5111 WVFGRD96 11.0 320 70 5 4.08 0.5052 WVFGRD96 12.0 320 70 0 4.08 0.4990 WVFGRD96 13.0 320 70 0 4.09 0.4922 WVFGRD96 14.0 140 90 20 4.10 0.4863 WVFGRD96 15.0 140 90 20 4.11 0.4806 WVFGRD96 16.0 320 90 -20 4.11 0.4739 WVFGRD96 17.0 320 90 -20 4.12 0.4664 WVFGRD96 18.0 320 85 -15 4.12 0.4590 WVFGRD96 19.0 320 85 -15 4.13 0.4512 WVFGRD96 20.0 320 85 -20 4.14 0.4436 WVFGRD96 21.0 320 85 -20 4.14 0.4362 WVFGRD96 22.0 320 70 -10 4.14 0.4296 WVFGRD96 23.0 320 70 -10 4.15 0.4234 WVFGRD96 24.0 320 70 -10 4.15 0.4174 WVFGRD96 25.0 320 70 -10 4.16 0.4114 WVFGRD96 26.0 320 70 -10 4.16 0.4058 WVFGRD96 27.0 320 70 -10 4.17 0.4008 WVFGRD96 28.0 320 70 -10 4.18 0.3967 WVFGRD96 29.0 320 70 -15 4.19 0.3933
The best solution is
WVFGRD96 3.0 140 85 -20 4.01 0.5467
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.04 n 3 lp c 0.08 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: