Location

Location ANSS

2017/07/17 09:27:04 36.727 -115.906 7.7 4.2 Nevada

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2017/07/17 09:27:04:0  36.73 -115.91   7.7 4.2 Nevada
 
 Stations used:
   AE.U15A AE.W13A CI.ARV CI.BC3 CI.BEL CI.BFS CI.CHF CI.DAN 
   CI.DEC CI.DJJ CI.EDW2 CI.FUR CI.GLA CI.GMR CI.GRA CI.HEC 
   CI.IRM CI.ISA CI.MWC CI.NEE2 CI.OSI CI.PASC CI.PDM CI.SLA 
   CI.TIN CI.TUQ CI.VES CI.VOG IM.NV31 LB.BMN LB.TPH NN.CMK6 
   NN.DSP NN.GMN NN.GWY NN.LHV NN.MOHS NN.PIO NN.PRN NN.Q09A 
   NN.Q12A NN.QSM NN.S11A NN.SHP NN.SPR3 NN.UNVG NN.V12A 
   NN.WLDB PY.BPH02 SN.HEL TA.R11B US.WUAZ UU.CCUT UU.FOR1 
   UU.FOR4 UU.KNB UU.PSUT UU.SWUT UU.SZCU UU.TCRU 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 6.53e+21 dyne-cm
  Mw = 3.81 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1      155    90   -155
   NP2       65    65     0
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.53e+21     17     287
    N   0.00e+00     65     155
    P  -6.53e+21     17      23

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -4.53e+21
       Mxy    -3.80e+21
       Mxz    -1.17e+21
       Myy     4.53e+21
       Myz    -2.50e+21
       Mzz     0.00e+00
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ###-------------   ---              
              #######------------ P ------           
             #########-----------   -------          
           ###########-----------------------        
          #############-----------------------       
         ###############-----------------------      
        ##   ############---------------------##     
        ## T #############------------------####     
       ###   ##############----------------######    
       #####################-------------########    
       #####################-----------##########    
       ######################-------#############    
        ######################---###############     
        #####################--#################     
         ###############--------###############      
          -----------------------#############       
           -----------------------###########        
             ---------------------#########          
              ---------------------#######           
                 -------------------###              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  0.00e+00  -1.17e+21   2.50e+21 
 -1.17e+21  -4.53e+21   3.80e+21 
  2.50e+21   3.80e+21   4.53e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20170717092704/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 65
      DIP = 65
     RAKE = 0
       MW = 3.81
       HS = 10.0

The NDK file is 20170717092704.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others

        
SLU
UNR
 USGS/SLU Moment Tensor Solution
 ENS  2017/07/17 09:27:04:0  36.73 -115.91   7.7 4.2 Nevada
 
 Stations used:
   AE.U15A AE.W13A CI.ARV CI.BC3 CI.BEL CI.BFS CI.CHF CI.DAN 
   CI.DEC CI.DJJ CI.EDW2 CI.FUR CI.GLA CI.GMR CI.GRA CI.HEC 
   CI.IRM CI.ISA CI.MWC CI.NEE2 CI.OSI CI.PASC CI.PDM CI.SLA 
   CI.TIN CI.TUQ CI.VES CI.VOG IM.NV31 LB.BMN LB.TPH NN.CMK6 
   NN.DSP NN.GMN NN.GWY NN.LHV NN.MOHS NN.PIO NN.PRN NN.Q09A 
   NN.Q12A NN.QSM NN.S11A NN.SHP NN.SPR3 NN.UNVG NN.V12A 
   NN.WLDB PY.BPH02 SN.HEL TA.R11B US.WUAZ UU.CCUT UU.FOR1 
   UU.FOR4 UU.KNB UU.PSUT UU.SWUT UU.SZCU UU.TCRU 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 6.53e+21 dyne-cm
  Mw = 3.81 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1      155    90   -155
   NP2       65    65     0
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.53e+21     17     287
    N   0.00e+00     65     155
    P  -6.53e+21     17      23

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -4.53e+21
       Mxy    -3.80e+21
       Mxz    -1.17e+21
       Myy     4.53e+21
       Myz    -2.50e+21
       Mzz     0.00e+00
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ###-------------   ---              
              #######------------ P ------           
             #########-----------   -------          
           ###########-----------------------        
          #############-----------------------       
         ###############-----------------------      
        ##   ############---------------------##     
        ## T #############------------------####     
       ###   ##############----------------######    
       #####################-------------########    
       #####################-----------##########    
       ######################-------#############    
        ######################---###############     
        #####################--#################     
         ###############--------###############      
          -----------------------#############       
           -----------------------###########        
             ---------------------#########          
              ---------------------#######           
                 -------------------###              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  0.00e+00  -1.17e+21   2.50e+21 
 -1.17e+21  -4.53e+21   3.80e+21 
  2.50e+21   3.80e+21   4.53e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20170717092704/index.html
	
REVIEWED BY NSL STAFF

Event ID:596256
Origin ID:1592846
Algorithm: Ichinose (2003) Long Period, Regional-Distance Waves
Seismic Moment Tensor Solution

2017/07/17 (198) 09:27:05.00 36.7304 -115.9092 1592846
	Depth =  12.0 (km)
	Mw    =  3.86
	Mo    =  7.72x10^21 (dyne x cm)

	Percent Double Couple =  97 %
	Percent CLVD          =   3 %
	no ISO calculated
	Epsilon=-0.02
	 Percent Variance Reduction =  65.81 %
	 Total Fit                  =  15.35 
	Major Double Couple
		            strike dip   rake
		Nodal Plane 1:  63  74    6
		Nodal Plane 2: 332  84  164

	DEVIATORIC MOMENT TENSOR

	Moment Tensor Elements: Spherical Coordinates
		Mrr=  0.32 Mtt= -6.20 Mff=  5.88
		Mrt= -0.28 Mrf=  2.23 Mtf=  4.25 EXP=21


	Moment Tensor Elements: Cartesian Coordinates
		-6.20 -4.25 -0.28
		-4.25  5.88 -2.23
		-0.28 -2.23  0.32

	Eigenvalues:
		T-axis eigenvalue=  7.79
		N-axis eigenvalue= -0.13
		P-axis eigenvalue= -7.66

	Eigenvalues and eigenvectors of the Major Double Couple:
		T-axis ev= 7.79 trend=287 plunge=15
		N-axis ev= 0.00 trend=132 plunge=73
		P-axis ev=-7.79 trend=19 plunge=7

	Maximum Azmuithal Gap=89 Distance to Nearest Station= 90.7 (km)

	Number of Stations (D=Displacement/V=Velocity) Used=11 (defining only)
		
	 GWY.NN.D HEL.SN.D UNVG.NN.D S11A.NN.D
	 PRN.NN.D QSM.NN.D V12A.NN.D PIO.NN.D
	 TPH.LB.D GMR.CI.D W13A.AE.D


              ------------ P --                             
          ####------------   ------                         
        #######----------------------                       
      ##########-----------------------                     
     ############-----------------------                    
    ##############-----------------------                   
  -#################---------------------##                 
  ###################-------------------###                 
T ####################----------------######                
  #####################-------------########                
 #######################----------###########               
 ########################------##############               
 #########################--#################               
 ############################################               
 ########################-##################                
 ####################------#################                
  ###############-----------###############                 
   #######-------------------##############                 
   --------------------------#############                  
     -------------------------###########                   
      -------------------------########                     
        ------------------------#####                       
          ----------------------###                         
              -----------------                             
                                                            


All Stations defining and nondefining: 
Station.Net 	Def 	Distance 	Azi    	Bazi  	lo-f 	hi-f vmodel
            	    	(km)     	(deg)  	(deg) 	(Hz) 	(Hz)    
GWY.NN (D) 	Y 	    90.7  	229  	 48  	0.020 	0.080 GWY.NN.wus.glib
HEL.SN (D) 	Y 	    95.4  	270  	 89  	0.020 	0.080 HEL.SN.wus.glib
UNVG.NN (D) 	Y 	    97.4  	135  	315  	0.020 	0.080 UNVG.NN.wus.glib
S11A.NN (D) 	Y 	   102.0  	  8  	188  	0.020 	0.080 S11A.NN.wus.glib
PRN.NN (D) 	Y 	   107.3  	 45  	226  	0.020 	0.080 PRN.NN.wus.glib
QSM.NN (D) 	Y 	   120.5  	226  	 45  	0.020 	0.080 QSM.NN.wus.glib
V12A.NN (D) 	Y 	   146.2  	139  	320  	0.020 	0.080 V12A.NN.wus.glib
PIO.NN (D) 	Y 	   184.6  	 42  	223  	0.020 	0.080 PIO.NN.wus.glib
TPH.LB (D) 	Y 	   189.4  	323  	142  	0.020 	0.080 TPH.LB.wus.glib
GMR.CI (D) 	Y 	   217.9  	174  	354  	0.020 	0.080 GMR.CI.wus.glib
W13A.AE (D) 	Y 	   256.6  	134  	316  	0.020 	0.080 W13A.AE.wus.glib

 (V)-velocity (D)-Displacement

Author: www-data
Date: 2017/07/17 13:30:56

mtinv Version 2.1_DEVEL OCT2008

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   335    90   -10   3.37 0.3082
WVFGRD96    2.0    65    75     0   3.50 0.3807
WVFGRD96    3.0    65    55     0   3.59 0.4219
WVFGRD96    4.0    65    55     0   3.63 0.4597
WVFGRD96    5.0    65    60     0   3.66 0.4888
WVFGRD96    6.0    65    60     0   3.69 0.5106
WVFGRD96    7.0    65    65     0   3.72 0.5286
WVFGRD96    8.0    65    60     0   3.77 0.5413
WVFGRD96    9.0    65    65     0   3.79 0.5464
WVFGRD96   10.0    65    65     0   3.81 0.5471
WVFGRD96   11.0    65    65     0   3.83 0.5428
WVFGRD96   12.0    65    70     0   3.85 0.5357
WVFGRD96   13.0    65    70     0   3.86 0.5260
WVFGRD96   14.0    65    70     0   3.87 0.5135
WVFGRD96   15.0    65    70     0   3.88 0.4992
WVFGRD96   16.0    65    70     0   3.89 0.4833
WVFGRD96   17.0    65    70     5   3.90 0.4661
WVFGRD96   18.0    65    70     5   3.91 0.4493
WVFGRD96   19.0    65    70     5   3.92 0.4318
WVFGRD96   20.0    65    70     5   3.92 0.4143
WVFGRD96   21.0    65    65     5   3.93 0.3978
WVFGRD96   22.0    65    70     5   3.93 0.3825
WVFGRD96   23.0    65    70    10   3.94 0.3688
WVFGRD96   24.0    70    70    15   3.94 0.3586
WVFGRD96   25.0    70    75    15   3.95 0.3500
WVFGRD96   26.0    70    75    15   3.95 0.3423
WVFGRD96   27.0    70    75    15   3.96 0.3350
WVFGRD96   28.0   155    90    20   3.96 0.3386
WVFGRD96   29.0   335    90   -20   3.97 0.3474

The best solution is

WVFGRD96   10.0    65    65     0   3.81 0.5471

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Jul 17 11:11:14 CDT 2017