Location

Location ANSS

2017/07/06 15:27:57 46.900 -112.493 26.2 3.7 Montana

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2017/07/06 15:27:57:0  46.90 -112.49  26.2 3.7 Montana
 
 Stations used:
   IW.DLMT IW.FXWY IW.PLID IW.REDW IW.SNOW RV.MKRVA US.BMO 
   US.BOZ US.EGMT US.HLID US.MSO US.NEW US.RLMT UW.TUCA WY.YHL 
   WY.YMP WY.YMR WY.YNR 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +40
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 5.13e+21 dyne-cm
  Mw = 3.74 
  Z  = 20 km
  Plane   Strike  Dip  Rake
   NP1      195    65   -30
   NP2      299    63   -152
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.13e+21      1     247
    N   0.00e+00     52     339
    P  -5.13e+21     38     156

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.88e+21
       Mxy     2.99e+21
       Mxz     2.24e+21
       Myy     3.85e+21
       Myz    -1.11e+21
       Mzz    -1.96e+21
                                                     
                                                     
                                                     
                                                     
                     -----------###                  
                 -------------#########              
              ---------------#############           
             --------------################          
           ---------------###################        
          -#########-----#####################       
         ###############--#####################      
        ###############-------##################     
        ###############-----------##############     
       ###############--------------#############    
       ###############-----------------##########    
       ##############--------------------########    
       ##############---------------------#######    
        #############-----------------------####     
           #########-------------------------###     
         T #########--------------------------#      
           #########------------   -----------       
           #########------------ P ----------        
             ########-----------   --------          
              #######---------------------           
                 #####-----------------              
                     #-------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.96e+21   2.24e+21   1.11e+21 
  2.24e+21  -1.88e+21  -2.99e+21 
  1.11e+21  -2.99e+21   3.85e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20170706152757/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 195
      DIP = 65
     RAKE = -30
       MW = 3.74
       HS = 20.0

The NDK file is 20170706152757.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2017/07/06 15:27:57:0  46.90 -112.49  26.2 3.7 Montana
 
 Stations used:
   IW.DLMT IW.FXWY IW.PLID IW.REDW IW.SNOW RV.MKRVA US.BMO 
   US.BOZ US.EGMT US.HLID US.MSO US.NEW US.RLMT UW.TUCA WY.YHL 
   WY.YMP WY.YMR WY.YNR 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +40
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 5.13e+21 dyne-cm
  Mw = 3.74 
  Z  = 20 km
  Plane   Strike  Dip  Rake
   NP1      195    65   -30
   NP2      299    63   -152
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.13e+21      1     247
    N   0.00e+00     52     339
    P  -5.13e+21     38     156

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.88e+21
       Mxy     2.99e+21
       Mxz     2.24e+21
       Myy     3.85e+21
       Myz    -1.11e+21
       Mzz    -1.96e+21
                                                     
                                                     
                                                     
                                                     
                     -----------###                  
                 -------------#########              
              ---------------#############           
             --------------################          
           ---------------###################        
          -#########-----#####################       
         ###############--#####################      
        ###############-------##################     
        ###############-----------##############     
       ###############--------------#############    
       ###############-----------------##########    
       ##############--------------------########    
       ##############---------------------#######    
        #############-----------------------####     
           #########-------------------------###     
         T #########--------------------------#      
           #########------------   -----------       
           #########------------ P ----------        
             ########-----------   --------          
              #######---------------------           
                 #####-----------------              
                     #-------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.96e+21   2.24e+21   1.11e+21 
  2.24e+21  -1.88e+21  -2.99e+21 
  1.11e+21  -2.99e+21   3.85e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20170706152757/index.html
	

Regional Moment Tensor (Mwr)
Moment	4.572e+14 N-m
Magnitude	3.7 Mwr
Depth	23.0 km
Percent DC	98 %
Half Duration	–
Catalog	US
Data Source	US1
Contributor	US1
Nodal Planes
Plane	Strike	Dip	Rake
NP1	296	71	-174
NP2	204	84	-19
Principal Axes
Axis	Value	Plunge	Azimuth
T	4.546e+14 N-m	9	251
N	0.050e+14 N-m	70	8
P	-4.597e+14 N-m	18	158

        

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   140    45    90   3.47 0.4113
WVFGRD96    2.0   215    50    85   3.53 0.4071
WVFGRD96    3.0    30    60    30   3.51 0.3974
WVFGRD96    4.0   190    80   -45   3.49 0.4087
WVFGRD96    5.0   195    85   -45   3.49 0.4325
WVFGRD96    6.0   190    80   -45   3.50 0.4598
WVFGRD96    7.0   190    80   -45   3.51 0.4860
WVFGRD96    8.0   190    75   -40   3.53 0.5096
WVFGRD96    9.0   190    75   -40   3.54 0.5326
WVFGRD96   10.0   185    70   -45   3.57 0.5514
WVFGRD96   11.0   190    70   -40   3.59 0.5711
WVFGRD96   12.0   190    70   -40   3.61 0.5871
WVFGRD96   13.0   190    65   -35   3.63 0.6032
WVFGRD96   14.0   190    65   -35   3.64 0.6197
WVFGRD96   15.0   195    65   -30   3.66 0.6327
WVFGRD96   16.0   195    65   -30   3.67 0.6420
WVFGRD96   17.0   195    65   -30   3.69 0.6481
WVFGRD96   18.0   195    65   -30   3.70 0.6507
WVFGRD96   19.0   195    65   -30   3.71 0.6499
WVFGRD96   20.0   195    65   -30   3.74 0.6532
WVFGRD96   21.0   195    65   -30   3.75 0.6489
WVFGRD96   22.0   195    65   -30   3.76 0.6427
WVFGRD96   23.0   195    65   -30   3.77 0.6343
WVFGRD96   24.0   195    65   -30   3.78 0.6227
WVFGRD96   25.0   195    65   -30   3.78 0.6080
WVFGRD96   26.0   195    65   -30   3.79 0.5917
WVFGRD96   27.0   195    65   -30   3.79 0.5738
WVFGRD96   28.0   195    65   -30   3.80 0.5539
WVFGRD96   29.0   195    60   -30   3.81 0.5319

The best solution is

WVFGRD96   20.0   195    65   -30   3.74 0.6532

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
CUS Model with Q from simple gamma values
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
  H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC)   QP   QS  ETAP  ETAS  FREFP  FREFS
  1.0000  5.0000  2.8900  2.5000 0.172E-02 0.387E-02 0.00  0.00  1.00  1.00 
  9.0000  6.1000  3.5200  2.7300 0.160E-02 0.363E-02 0.00  0.00  1.00  1.00 
 10.0000  6.4000  3.7000  2.8200 0.149E-02 0.336E-02 0.00  0.00  1.00  1.00 
 20.0000  6.7000  3.8700  2.9020 0.000E-04 0.000E-04 0.00  0.00  1.00  1.00 
  0.0000  8.1500  4.7000  3.3640 0.194E-02 0.431E-02 0.00  0.00  1.00  1.00 

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Thu Jul 6 16:26:37 CDT 2017