Location

2014/05/10 14:16:10 60.011 -152.131 5.5 86.6 Alaska

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/05/10 14:16:10:0  60.01 -152.13   5.5 86.6 Alaska
 
 Stations used:
   AK.BAL AK.BARN AK.BPAW AK.BRLK AK.BWN AK.CCB AK.DHY AK.DOT 
   AK.EYAK AK.FID AK.GHO AK.GLB AK.GLI AK.HARP AK.HDA AK.HIN 
   AK.KNK AK.KTH AK.MCAR AK.MCK AK.MDM AK.MLY AK.NEA AK.PAX 
   AK.PPLA AK.RAG AK.RC01 AK.RND AK.SAW AK.SCM AK.TRF AK.VRDI 
   AK.WRH AK.YAH AT.CHGN AT.MENT AT.MID AT.OHAK AV.RDWB AV.RED 
   IM.IL31 IU.COLA 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.05 n 3 
 
 Best Fitting Double Couple
  Mo = 3.63e+24 dyne-cm
  Mw = 5.64 
  Z  = 88 km
  Plane   Strike  Dip  Rake
   NP1      102    48   109
   NP2      255    45    70
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.63e+24     76      82
    N   0.00e+00     14     269
    P  -3.63e+24      2     179

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.62e+24
       Mxy     9.25e+22
       Mxz     2.27e+23
       Myy     2.10e+23
       Myz     8.48e+23
       Mzz     3.41e+24
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             ------------------------------          
           ----------------------------------        
          -------------##################-----       
         ----------##########################--      
        --------###############################-     
        ------##################################     
       #----##################   ################    
       ##--################### T ################    
       #######################   ################    
       ##---#####################################    
        ------##################################     
        ---------#############################--     
         -----------#######################----      
          ----------------############--------       
           ----------------------------------        
             ------------------------------          
              ----------------------------           
                 ----------   ---------              
                     ------ P -----                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  3.41e+24   2.27e+23  -8.48e+23 
  2.27e+23  -3.62e+24  -9.25e+22 
 -8.48e+23  -9.25e+22   2.10e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140510141610/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 255
      DIP = 45
     RAKE = 70
       MW = 5.64
       HS = 88.0

The NDK file is 20140510141610.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
USGSMT
GCMT
 USGS/SLU Moment Tensor Solution
 ENS  2014/05/10 14:16:10:0  60.01 -152.13   5.5 86.6 Alaska
 
 Stations used:
   AK.BAL AK.BARN AK.BPAW AK.BRLK AK.BWN AK.CCB AK.DHY AK.DOT 
   AK.EYAK AK.FID AK.GHO AK.GLB AK.GLI AK.HARP AK.HDA AK.HIN 
   AK.KNK AK.KTH AK.MCAR AK.MCK AK.MDM AK.MLY AK.NEA AK.PAX 
   AK.PPLA AK.RAG AK.RC01 AK.RND AK.SAW AK.SCM AK.TRF AK.VRDI 
   AK.WRH AK.YAH AT.CHGN AT.MENT AT.MID AT.OHAK AV.RDWB AV.RED 
   IM.IL31 IU.COLA 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.05 n 3 
 
 Best Fitting Double Couple
  Mo = 3.63e+24 dyne-cm
  Mw = 5.64 
  Z  = 88 km
  Plane   Strike  Dip  Rake
   NP1      102    48   109
   NP2      255    45    70
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.63e+24     76      82
    N   0.00e+00     14     269
    P  -3.63e+24      2     179

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.62e+24
       Mxy     9.25e+22
       Mxz     2.27e+23
       Myy     2.10e+23
       Myz     8.48e+23
       Mzz     3.41e+24
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             ------------------------------          
           ----------------------------------        
          -------------##################-----       
         ----------##########################--      
        --------###############################-     
        ------##################################     
       #----##################   ################    
       ##--################### T ################    
       #######################   ################    
       ##---#####################################    
        ------##################################     
        ---------#############################--     
         -----------#######################----      
          ----------------############--------       
           ----------------------------------        
             ------------------------------          
              ----------------------------           
                 ----------   ---------              
                     ------ P -----                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  3.41e+24   2.27e+23  -8.48e+23 
  2.27e+23  -3.62e+24  -9.25e+22 
 -8.48e+23  -9.25e+22   2.10e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140510141610/index.html
	

Body-wave Moment Tensor (Mwb)

Moment magnitude derived from a moment 
tensor inversion of long-period (~10 - 100 s) 
body-waves (P-, SH- ) at teleseismic distances 
(~30 to ~90 degrees).

Moment
    4.62e+17 N-m
Magnitude
    5.7
Percent DC
    58%
Depth
    93.0 km
Updated
    2014-05-10 15:25:09 UTC
Author
    us
Catalog
    us
Contributor
    us
Code
    us_b000qgyt_mwb

Principal Axes
Axis	Value	Plunge	Azimuth
T	4.129	70	101
N	0.858	19	264
P	-4.988	5	356
Nodal Planes
Plane	Strike	Dip	Rake
NP1	249	53	66
NP2	106	43	118

        
May 10, 2014, SOUTHERN ALASKA, MW=5.8

Meredith Nettles
Goran Ekstrom

CENTROID-MOMENT-TENSOR  SOLUTION
GCMT EVENT:     C201405101416A
DATA: II IU CU MN G  IC LD GE DK
 KP
L.P.BODY WAVES:107S, 202C, T= 40
SURFACE WAVES: 111S, 241C, T= 50
TIMESTAMP:      Q-20140510174259
CENTROID LOCATION:
ORIGIN TIME:      14:16:12.0 0.1
LAT:59.98N 0.01;LON:152.07W 0.02
DEP:104.9  0.7;TRIANG HDUR:  1.9
MOMENT TENSOR: SCALE 10**24 D-CM
RR= 4.160 0.053; TT=-6.300 0.061
PP= 2.140 0.063; RT=-0.375 0.054
RP=-1.210 0.045; TP= 0.260 0.057
PRINCIPAL AXES:
1.(T) VAL=  4.744;PLG=65;AZM= 95
2.(N)       1.575;    25;    271
3.(P)      -6.319;     2;      1
BEST DBLE.COUPLE:M0= 5.53*10**24
NP1: STRIKE=115;DIP=48;SLIP= 125
NP2: STRIKE=249;DIP=52;SLIP=  57

            ---- P ----
        --------   --------
      -----------------------
    ---------------------------
   ----------------#########----
  #----------###################-
  #-------#######################
 ###---###########################
 ####-###############   ##########
 ###--############### T ##########
 ##----##############   ##########
  -------########################
  ----------#####################
   -------------##############--
    ---------------------------
      -----------------------
        -------------------
            -----------
        

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.05 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0     5    40   -85   4.87 0.2141
WVFGRD96    4.0   350    85     5   4.92 0.2189
WVFGRD96    6.0   170    90     0   4.97 0.2282
WVFGRD96    8.0   170    90     0   5.02 0.2319
WVFGRD96   10.0    35    65   -40   5.03 0.2476
WVFGRD96   12.0    40    70   -35   5.04 0.2613
WVFGRD96   14.0    40    70   -35   5.06 0.2727
WVFGRD96   16.0    40    70   -30   5.07 0.2813
WVFGRD96   18.0    40    70   -30   5.09 0.2878
WVFGRD96   20.0    50    65    50   5.08 0.2990
WVFGRD96   22.0    50    65    50   5.10 0.3125
WVFGRD96   24.0    50    65    50   5.12 0.3242
WVFGRD96   26.0    50    65    50   5.13 0.3333
WVFGRD96   28.0    50    65    50   5.15 0.3396
WVFGRD96   30.0    50    65    50   5.16 0.3443
WVFGRD96   32.0    50    65    50   5.18 0.3469
WVFGRD96   34.0    50    65    45   5.19 0.3473
WVFGRD96   36.0    50    65    45   5.20 0.3475
WVFGRD96   38.0    50    65    45   5.22 0.3491
WVFGRD96   40.0    60    65    60   5.35 0.3592
WVFGRD96   42.0    60    60    55   5.36 0.3693
WVFGRD96   44.0    65    45    50   5.37 0.3833
WVFGRD96   46.0    65    45    50   5.39 0.3980
WVFGRD96   48.0    65    45    50   5.40 0.4124
WVFGRD96   50.0    70    45    55   5.42 0.4266
WVFGRD96   52.0    70    45    60   5.43 0.4422
WVFGRD96   54.0    70    45    60   5.45 0.4578
WVFGRD96   56.0    75    45    65   5.47 0.4734
WVFGRD96   58.0    75    45    65   5.48 0.4887
WVFGRD96   60.0    75    45    65   5.49 0.5022
WVFGRD96   62.0    80    45    75   5.50 0.5160
WVFGRD96   64.0    80    45    75   5.51 0.5292
WVFGRD96   66.0    85    45    80   5.53 0.5414
WVFGRD96   68.0    85    45    80   5.54 0.5523
WVFGRD96   70.0    85    45    80   5.55 0.5616
WVFGRD96   72.0   270    45    90   5.56 0.5709
WVFGRD96   74.0    90    45    90   5.57 0.5789
WVFGRD96   76.0    95    45    95   5.59 0.5853
WVFGRD96   78.0    95    45    95   5.59 0.5909
WVFGRD96   80.0   265    45    85   5.60 0.5951
WVFGRD96   82.0   260    45    80   5.61 0.5984
WVFGRD96   84.0   260    45    80   5.61 0.6003
WVFGRD96   86.0   255    45    70   5.64 0.6021
WVFGRD96   88.0   255    45    70   5.64 0.6024
WVFGRD96   90.0   250    45    65   5.65 0.6018
WVFGRD96   92.0   250    45    65   5.66 0.6000
WVFGRD96   94.0   240    50    55   5.69 0.5999
WVFGRD96   96.0   240    50    55   5.69 0.5981
WVFGRD96   98.0   240    50    55   5.69 0.5951
WVFGRD96  100.0   240    50    55   5.70 0.5905
WVFGRD96  102.0   240    50    55   5.70 0.5851
WVFGRD96  104.0   240    50    55   5.70 0.5787
WVFGRD96  106.0   235    50    50   5.72 0.5718
WVFGRD96  108.0   235    50    50   5.72 0.5644

The best solution is

WVFGRD96   88.0   255    45    70   5.64 0.6024

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.05 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Dec 7 00:11:48 CST 2015