Location

2013/12/08 18:08:08 43.217 -110.632 5.0 4.2 Wyoming

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2013/12/08 18:08:08:0  43.22 -110.63   5.0 4.2 Wyoming
 
 Stations used:
   IW.MOOW IW.REDW IW.SNOW IW.TPAW US.AHID US.BW06 
 
 Filtering commands used:
   cut a -40 a 100
   rtr
   taper w 0.1
   transfer from none to none freqlimits 0.06 0.07 0.20 0.30
 
 Best Fitting Double Couple
  Mo = 3.39e+21 dyne-cm
  Mw = 3.62 
  Z  = 9 km
  Plane   Strike  Dip  Rake
   NP1      220    75   -40
   NP2      322    52   -161
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.39e+21     15     276
    N   0.00e+00     48      23
    P  -3.39e+21     38     174

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.02e+21
       Mxy    -1.01e+20
       Mxz     1.73e+21
       Myy     3.11e+21
       Myz    -1.01e+21
       Mzz    -1.09e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ########-------------------#           
             #############-----------######          
           ##################------##########        
          ######################-#############       
         ######################---#############      
        #####################------#############     
        #   ###############----------###########     
       ## T #############-------------###########    
       ##   ############---------------##########    
       ###############------------------#########    
       ##############-------------------#########    
        ############---------------------#######     
        ###########----------------------#######     
         #########------------------------#####      
          #######-----------   -----------####       
           #####------------ P -----------###        
             ##-------------   ----------##          
              #--------------------------#           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.09e+21   1.73e+21   1.01e+21 
  1.73e+21  -2.02e+21   1.01e+20 
  1.01e+21   1.01e+20   3.11e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20131208180808/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 220
      DIP = 75
     RAKE = -40
       MW = 3.62
       HS = 9.0

The NDK file is 20131208180808.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2013/12/08 18:08:08:0  43.22 -110.63   5.0 4.2 Wyoming
 
 Stations used:
   IW.MOOW IW.REDW IW.SNOW IW.TPAW US.AHID US.BW06 
 
 Filtering commands used:
   cut a -40 a 100
   rtr
   taper w 0.1
   transfer from none to none freqlimits 0.06 0.07 0.20 0.30
 
 Best Fitting Double Couple
  Mo = 3.39e+21 dyne-cm
  Mw = 3.62 
  Z  = 9 km
  Plane   Strike  Dip  Rake
   NP1      220    75   -40
   NP2      322    52   -161
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.39e+21     15     276
    N   0.00e+00     48      23
    P  -3.39e+21     38     174

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.02e+21
       Mxy    -1.01e+20
       Mxz     1.73e+21
       Myy     3.11e+21
       Myz    -1.01e+21
       Mzz    -1.09e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ########-------------------#           
             #############-----------######          
           ##################------##########        
          ######################-#############       
         ######################---#############      
        #####################------#############     
        #   ###############----------###########     
       ## T #############-------------###########    
       ##   ############---------------##########    
       ###############------------------#########    
       ##############-------------------#########    
        ############---------------------#######     
        ###########----------------------#######     
         #########------------------------#####      
          #######-----------   -----------####       
           #####------------ P -----------###        
             ##-------------   ----------##          
              #--------------------------#           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.09e+21   1.73e+21   1.01e+21 
  1.73e+21  -2.02e+21   1.01e+20 
  1.01e+21   1.01e+20   3.11e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20131208180808/index.html
	

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -40 a 100
rtr
taper w 0.1
transfer from none to none freqlimits 0.06 0.07 0.20 0.30
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   285    45   110   3.14 0.4211
WVFGRD96    1.0    85    45    85   3.20 0.4069
WVFGRD96    2.0    85    45    85   3.33 0.4230
WVFGRD96    3.0   220    80   -60   3.35 0.4540
WVFGRD96    4.0   220    75   -50   3.36 0.4901
WVFGRD96    5.0   220    75   -45   3.40 0.5164
WVFGRD96    6.0   220    75   -40   3.45 0.5371
WVFGRD96    7.0   225    80   -35   3.49 0.5530
WVFGRD96    8.0   220    75   -40   3.58 0.5623
WVFGRD96    9.0   220    75   -40   3.62 0.5660
WVFGRD96   10.0   220    75   -40   3.65 0.5600
WVFGRD96   11.0   220    75   -40   3.68 0.5479
WVFGRD96   12.0    50    85    35   3.69 0.5421
WVFGRD96   13.0    50    80    35   3.71 0.5342
WVFGRD96   14.0    55    75    40   3.73 0.5229
WVFGRD96   15.0    55    75    40   3.75 0.5072
WVFGRD96   16.0    55    80    40   3.76 0.4926
WVFGRD96   17.0   230    90   -40   3.76 0.4778
WVFGRD96   18.0    55    85    45   3.77 0.4638
WVFGRD96   19.0   230    85   -40   3.77 0.4597
WVFGRD96   20.0   215    60   -45   3.78 0.4548
WVFGRD96   21.0   210    55   -50   3.80 0.4640
WVFGRD96   22.0   200    45   -60   3.82 0.4696
WVFGRD96   23.0   190    40   -65   3.84 0.4807
WVFGRD96   24.0   190    40   -65   3.85 0.4875
WVFGRD96   25.0   190    40   -65   3.85 0.4895
WVFGRD96   26.0   170    30   -70   3.88 0.4985
WVFGRD96   27.0   170    30   -65   3.89 0.4991
WVFGRD96   28.0   165    30   -75   3.89 0.5018
WVFGRD96   29.0   115    45   -30   3.81 0.5000

The best solution is

WVFGRD96    9.0   220    75   -40   3.62 0.5660

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -40 a 100
rtr
taper w 0.1
transfer from none to none freqlimits 0.06 0.07 0.20 0.30
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Dec 7 00:23:50 CST 2015