Location

2013/03/13 08:05:44 62.552 -151.238 4.9 81.0 Alaska

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2013/03/13 08:05:44:0  62.55 -151.24   4.9 81.0 Alaska
 
 Stations used:
   AK.BPAW AK.BWN AK.CAST AK.CCB AK.DHY AK.DOT AK.EYAK AK.HDA 
   AK.KLU AK.KNK AK.MCK AK.MDM AK.MLY AK.NEA AK.PAX AK.PPD 
   AK.PPLA AK.RC01 AK.RIDG AK.RND AK.SAW AK.SCM AK.SCRK AK.SWD 
   AK.TRF AK.WRH AT.PMR AT.SVW2 IU.COLA 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.07 n 3
 
 Best Fitting Double Couple
  Mo = 1.32e+23 dyne-cm
  Mw = 4.68 
  Z  = 91 km
  Plane   Strike  Dip  Rake
   NP1       60    60    55
   NP2      294    45   135
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.32e+23     59     278
    N   0.00e+00     30      79
    P  -1.32e+23      9     174

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.27e+23
       Mxy     7.75e+21
       Mxz     2.79e+22
       Myy     3.33e+22
       Myz    -5.97e+22
       Mzz     9.35e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             ------------------------------          
           -----############-----------------        
          -######################-------------       
         ###########################---------##      
        ###############################------###     
        #################################---####     
       ############   ####################-######    
       ############ T ###################---#####    
       ############   #################------####    
       ##############################---------###    
        ###########################-----------##     
        ########################---------------#     
         ###################-------------------      
          #############-----------------------       
           ----------------------------------        
             ------------------------------          
              ----------------------------           
                 -----------   --------              
                     ------- P ----                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  9.35e+22   2.79e+22   5.97e+22 
  2.79e+22  -1.27e+23  -7.75e+21 
  5.97e+22  -7.75e+21   3.33e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130313080544/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 60
      DIP = 60
     RAKE = 55
       MW = 4.68
       HS = 91.0

The NDK file is 20130313080544.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2013/03/13 08:05:44:0  62.55 -151.24   4.9 81.0 Alaska
 
 Stations used:
   AK.BPAW AK.BWN AK.CAST AK.CCB AK.DHY AK.DOT AK.EYAK AK.HDA 
   AK.KLU AK.KNK AK.MCK AK.MDM AK.MLY AK.NEA AK.PAX AK.PPD 
   AK.PPLA AK.RC01 AK.RIDG AK.RND AK.SAW AK.SCM AK.SCRK AK.SWD 
   AK.TRF AK.WRH AT.PMR AT.SVW2 IU.COLA 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.07 n 3
 
 Best Fitting Double Couple
  Mo = 1.32e+23 dyne-cm
  Mw = 4.68 
  Z  = 91 km
  Plane   Strike  Dip  Rake
   NP1       60    60    55
   NP2      294    45   135
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.32e+23     59     278
    N   0.00e+00     30      79
    P  -1.32e+23      9     174

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.27e+23
       Mxy     7.75e+21
       Mxz     2.79e+22
       Myy     3.33e+22
       Myz    -5.97e+22
       Mzz     9.35e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             ------------------------------          
           -----############-----------------        
          -######################-------------       
         ###########################---------##      
        ###############################------###     
        #################################---####     
       ############   ####################-######    
       ############ T ###################---#####    
       ############   #################------####    
       ##############################---------###    
        ###########################-----------##     
        ########################---------------#     
         ###################-------------------      
          #############-----------------------       
           ----------------------------------        
             ------------------------------          
              ----------------------------           
                 -----------   --------              
                     ------- P ----                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  9.35e+22   2.79e+22   5.97e+22 
  2.79e+22  -1.27e+23  -7.75e+21 
  5.97e+22  -7.75e+21   3.33e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130313080544/index.html
	

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.07 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5    85    45   -75   3.73 0.2132
WVFGRD96    1.0    85    45   -75   3.77 0.2086
WVFGRD96    2.0    85    50   -80   3.88 0.2457
WVFGRD96    3.0    85    45   -75   3.93 0.2374
WVFGRD96    4.0    95    45   -60   3.93 0.2108
WVFGRD96    5.0    95    45   -55   3.93 0.2003
WVFGRD96    6.0    30    70   -45   3.91 0.2028
WVFGRD96    7.0    25    65   -45   3.93 0.2205
WVFGRD96    8.0    30    70   -50   3.99 0.2285
WVFGRD96    9.0    25    65   -50   4.01 0.2413
WVFGRD96   10.0    30    65   -45   4.01 0.2512
WVFGRD96   11.0   245    65    65   4.04 0.2595
WVFGRD96   12.0   240    65    60   4.04 0.2686
WVFGRD96   13.0   240    65    60   4.05 0.2757
WVFGRD96   14.0   240    65    60   4.06 0.2807
WVFGRD96   15.0   240    65    55   4.07 0.2841
WVFGRD96   16.0   235    65    50   4.08 0.2871
WVFGRD96   17.0   235    65    50   4.09 0.2901
WVFGRD96   18.0   235    65    50   4.10 0.2915
WVFGRD96   19.0   230    70    45   4.11 0.2941
WVFGRD96   20.0   230    70    45   4.12 0.2963
WVFGRD96   21.0   230    70    45   4.13 0.2983
WVFGRD96   22.0   230    70    45   4.14 0.3002
WVFGRD96   23.0   230    70    45   4.15 0.2986
WVFGRD96   24.0   230    70    40   4.16 0.2993
WVFGRD96   25.0   225    70    40   4.17 0.3006
WVFGRD96   26.0   225    70    40   4.17 0.2980
WVFGRD96   27.0   225    70    40   4.18 0.2986
WVFGRD96   28.0   225    70    40   4.19 0.2988
WVFGRD96   29.0   225    65    40   4.20 0.2966
WVFGRD96   30.0   225    65    40   4.21 0.2973
WVFGRD96   31.0   220    65    35   4.22 0.2959
WVFGRD96   32.0   215    60    30   4.23 0.2984
WVFGRD96   33.0   215    60    30   4.24 0.3012
WVFGRD96   34.0   215    60    30   4.25 0.3020
WVFGRD96   35.0   215    60    30   4.26 0.3044
WVFGRD96   36.0   215    60    30   4.27 0.3056
WVFGRD96   37.0    50    75    30   4.30 0.3077
WVFGRD96   38.0    50    75    25   4.33 0.3103
WVFGRD96   39.0    50    75    25   4.34 0.3132
WVFGRD96   40.0   220    60    40   4.38 0.3224
WVFGRD96   41.0   220    60    40   4.39 0.3249
WVFGRD96   42.0   220    60    40   4.40 0.3283
WVFGRD96   43.0   220    60    40   4.41 0.3324
WVFGRD96   44.0   220    60    40   4.42 0.3360
WVFGRD96   45.0   220    60    40   4.43 0.3400
WVFGRD96   46.0   220    60    40   4.44 0.3433
WVFGRD96   47.0   220    60    40   4.45 0.3465
WVFGRD96   48.0    50    65    35   4.48 0.3532
WVFGRD96   49.0    50    65    35   4.49 0.3598
WVFGRD96   50.0    50    65    35   4.50 0.3678
WVFGRD96   51.0    50    65    35   4.51 0.3754
WVFGRD96   52.0    50    65    35   4.52 0.3838
WVFGRD96   53.0    50    65    35   4.53 0.3923
WVFGRD96   54.0    50    65    35   4.54 0.4009
WVFGRD96   55.0    50    55    45   4.55 0.4117
WVFGRD96   56.0    50    55    45   4.56 0.4270
WVFGRD96   57.0    50    55    45   4.57 0.4427
WVFGRD96   58.0    50    55    45   4.57 0.4580
WVFGRD96   59.0    50    55    45   4.58 0.4730
WVFGRD96   60.0    50    55    45   4.59 0.4881
WVFGRD96   61.0    55    55    50   4.60 0.5023
WVFGRD96   62.0    55    55    50   4.60 0.5174
WVFGRD96   63.0    55    55    50   4.61 0.5320
WVFGRD96   64.0    55    55    50   4.61 0.5452
WVFGRD96   65.0    55    55    50   4.62 0.5586
WVFGRD96   66.0    55    55    50   4.62 0.5709
WVFGRD96   67.0    55    55    50   4.63 0.5841
WVFGRD96   68.0    55    55    50   4.63 0.5951
WVFGRD96   69.0    55    55    50   4.64 0.6059
WVFGRD96   70.0    55    55    50   4.64 0.6168
WVFGRD96   71.0    60    55    55   4.64 0.6262
WVFGRD96   72.0    60    55    55   4.65 0.6361
WVFGRD96   73.0    60    55    55   4.65 0.6449
WVFGRD96   74.0    60    55    55   4.65 0.6534
WVFGRD96   75.0    60    55    55   4.66 0.6606
WVFGRD96   76.0    60    55    55   4.66 0.6682
WVFGRD96   77.0    60    55    55   4.66 0.6737
WVFGRD96   78.0    60    55    55   4.66 0.6799
WVFGRD96   79.0    60    55    55   4.66 0.6844
WVFGRD96   80.0    60    55    55   4.66 0.6888
WVFGRD96   81.0    60    60    55   4.67 0.6941
WVFGRD96   82.0    60    60    55   4.67 0.6981
WVFGRD96   83.0    60    60    55   4.67 0.7022
WVFGRD96   84.0    60    60    55   4.67 0.7052
WVFGRD96   85.0    60    60    55   4.67 0.7080
WVFGRD96   86.0    60    60    55   4.67 0.7102
WVFGRD96   87.0    60    60    55   4.68 0.7117
WVFGRD96   88.0    60    60    55   4.68 0.7131
WVFGRD96   89.0    60    60    55   4.68 0.7144
WVFGRD96   90.0    60    60    55   4.68 0.7141
WVFGRD96   91.0    60    60    55   4.68 0.7146
WVFGRD96   92.0    60    60    55   4.68 0.7142
WVFGRD96   93.0    60    60    55   4.68 0.7138
WVFGRD96   94.0    60    60    55   4.67 0.7124
WVFGRD96   95.0    60    60    55   4.67 0.7119
WVFGRD96   96.0    65    60    60   4.68 0.7102
WVFGRD96   97.0    65    60    60   4.68 0.7092
WVFGRD96   98.0    65    60    60   4.68 0.7076
WVFGRD96   99.0    65    60    60   4.68 0.7064

The best solution is

WVFGRD96   91.0    60    60    55   4.68 0.7146

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.07 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Dec 7 00:20:51 CST 2015