Location

2012/09/13 05:58:04 59.610 -153.130 102.5 4.00 Alaska

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2012/09/13 05:58:04:0  59.61 -153.13 102.5 4.0 Alaska
 
 Stations used:
   AK.BRLK AK.CNP AK.FIB AK.HOM AK.RC01 AK.SSN AT.SVW2 II.KDAK 
 
 Filtering commands used:
   hp c 0.03 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 1.66e+22 dyne-cm
  Mw = 4.08 
  Z  = 121 km
  Plane   Strike  Dip  Rake
   NP1       65    65    55
   NP2      304    42   141
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.66e+22     55     289
    N   0.00e+00     31      81
    P  -1.66e+22     13     180

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.52e+22
       Mxy    -1.56e+21
       Mxz     6.22e+21
       Myy     4.75e+21
       Myz    -7.34e+21
       Mzz     1.04e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             ----########------------------          
           -###################--------------        
          ########################------------       
         ############################----------      
        ###############################-------##     
        ##########   ###################----####     
       ########### T #####################-######    
       ###########   ####################--######    
       ################################-----#####    
       #############################---------####    
        #########################------------###     
        #####################----------------###     
         ###############---------------------##      
          -----------------------------------#       
           ----------------------------------        
             ------------------------------          
              -------------   ------------           
                 ---------- P ---------              
                     ------   -----                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.04e+22   6.22e+21   7.34e+21 
  6.22e+21  -1.52e+22   1.56e+21 
  7.34e+21   1.56e+21   4.75e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20120913055804/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 65
      DIP = 65
     RAKE = 55
       MW = 4.08
       HS = 121.0

The NDK file is 20120913055804.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2012/09/13 05:58:04:0  59.61 -153.13 102.5 4.0 Alaska
 
 Stations used:
   AK.BRLK AK.CNP AK.FIB AK.HOM AK.RC01 AK.SSN AT.SVW2 II.KDAK 
 
 Filtering commands used:
   hp c 0.03 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 1.66e+22 dyne-cm
  Mw = 4.08 
  Z  = 121 km
  Plane   Strike  Dip  Rake
   NP1       65    65    55
   NP2      304    42   141
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.66e+22     55     289
    N   0.00e+00     31      81
    P  -1.66e+22     13     180

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.52e+22
       Mxy    -1.56e+21
       Mxz     6.22e+21
       Myy     4.75e+21
       Myz    -7.34e+21
       Mzz     1.04e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             ----########------------------          
           -###################--------------        
          ########################------------       
         ############################----------      
        ###############################-------##     
        ##########   ###################----####     
       ########### T #####################-######    
       ###########   ####################--######    
       ################################-----#####    
       #############################---------####    
        #########################------------###     
        #####################----------------###     
         ###############---------------------##      
          -----------------------------------#       
           ----------------------------------        
             ------------------------------          
              -------------   ------------           
                 ---------- P ---------              
                     ------   -----                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.04e+22   6.22e+21   7.34e+21 
  6.22e+21  -1.52e+22   1.56e+21 
  7.34e+21   1.56e+21   4.75e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20120913055804/index.html
	

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.03 n 3
lp c 0.10 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   330    40   -10   2.99 0.1040
WVFGRD96    1.0   330    55   -10   2.95 0.1120
WVFGRD96    2.0   135    55   -60   3.19 0.1497
WVFGRD96    3.0   135    55   -60   3.23 0.1663
WVFGRD96    4.0   325    50   -35   3.22 0.1773
WVFGRD96    5.0   330    55   -25   3.23 0.1879
WVFGRD96    6.0   335    60   -15   3.24 0.1919
WVFGRD96    7.0   335    60   -15   3.27 0.1969
WVFGRD96    8.0   335    55    -5   3.32 0.1936
WVFGRD96    9.0   335    55     0   3.35 0.1946
WVFGRD96   10.0   340    55    10   3.37 0.1935
WVFGRD96   11.0   155    90    25   3.37 0.1876
WVFGRD96   12.0   160    80    25   3.38 0.1835
WVFGRD96   13.0    70    75    25   3.41 0.1814
WVFGRD96   14.0    70    70    20   3.42 0.1824
WVFGRD96   15.0    70    70    20   3.44 0.1833
WVFGRD96   16.0    60    80   -15   3.46 0.1886
WVFGRD96   17.0    60    80   -15   3.48 0.1934
WVFGRD96   18.0    60    80   -15   3.50 0.1988
WVFGRD96   19.0    60    80   -15   3.51 0.2036
WVFGRD96   20.0    60    80   -15   3.52 0.2096
WVFGRD96   21.0    60    80   -15   3.54 0.2152
WVFGRD96   22.0    60    80   -10   3.55 0.2188
WVFGRD96   23.0    60    80   -10   3.57 0.2249
WVFGRD96   24.0    65    85    -5   3.56 0.2312
WVFGRD96   25.0    65    80    -5   3.57 0.2361
WVFGRD96   26.0    65    80     0   3.58 0.2426
WVFGRD96   27.0   255    60    30   3.63 0.2460
WVFGRD96   28.0   250    65    25   3.64 0.2542
WVFGRD96   29.0   250    65    25   3.65 0.2616
WVFGRD96   30.0   250    65    25   3.66 0.2668
WVFGRD96   31.0   250    65    25   3.67 0.2721
WVFGRD96   32.0   255    65    30   3.66 0.2758
WVFGRD96   33.0   255    65    30   3.67 0.2795
WVFGRD96   34.0   250    70    25   3.68 0.2831
WVFGRD96   35.0   250    70    25   3.69 0.2853
WVFGRD96   36.0   245    90     0   3.67 0.2893
WVFGRD96   37.0   245    90     0   3.69 0.2930
WVFGRD96   38.0   245    90     0   3.70 0.2956
WVFGRD96   39.0    65    85     0   3.73 0.2982
WVFGRD96   40.0    65    80    -5   3.75 0.2994
WVFGRD96   41.0    65    85    -5   3.76 0.2993
WVFGRD96   42.0    65    85   -10   3.78 0.2980
WVFGRD96   43.0    65    85   -10   3.79 0.2964
WVFGRD96   44.0    65    85   -10   3.80 0.2952
WVFGRD96   45.0    60    85   -10   3.84 0.2936
WVFGRD96   46.0    60    85   -10   3.85 0.2921
WVFGRD96   47.0   240    90     0   3.86 0.2918
WVFGRD96   48.0   240    90     0   3.86 0.2920
WVFGRD96   49.0    60    90     0   3.87 0.2919
WVFGRD96   50.0    60    90     0   3.88 0.2914
WVFGRD96   51.0    60    90     0   3.88 0.2906
WVFGRD96   52.0    65    75    15   3.87 0.2924
WVFGRD96   53.0   240    90    -5   3.89 0.2932
WVFGRD96   54.0    65    75    15   3.88 0.2958
WVFGRD96   55.0    65    75    15   3.88 0.2977
WVFGRD96   56.0    60    80    20   3.92 0.3028
WVFGRD96   57.0    60    80    20   3.92 0.3079
WVFGRD96   58.0    60    80    20   3.93 0.3114
WVFGRD96   59.0    60    80    20   3.93 0.3157
WVFGRD96   60.0    60    80    20   3.94 0.3210
WVFGRD96   61.0    60    80    20   3.94 0.3244
WVFGRD96   62.0    60    80    20   3.94 0.3284
WVFGRD96   63.0    60    80    20   3.95 0.3324
WVFGRD96   64.0    60    75    15   3.97 0.3341
WVFGRD96   65.0    60    75    20   3.97 0.3385
WVFGRD96   66.0    60    75    15   3.98 0.3417
WVFGRD96   67.0    60    75    20   3.98 0.3447
WVFGRD96   68.0    60    75    20   3.98 0.3483
WVFGRD96   69.0    60    75    20   3.98 0.3488
WVFGRD96   70.0    60    75    20   3.99 0.3535
WVFGRD96   71.0    60    75    20   3.99 0.3548
WVFGRD96   72.0    55    85    25   3.99 0.3581
WVFGRD96   73.0    55    85    25   4.00 0.3600
WVFGRD96   74.0    55    85    25   4.00 0.3632
WVFGRD96   75.0    55    85    25   4.00 0.3650
WVFGRD96   76.0    55    85    25   4.00 0.3669
WVFGRD96   77.0    55    85    30   4.00 0.3685
WVFGRD96   78.0    55    85    25   4.00 0.3706
WVFGRD96   79.0    55    85    30   4.00 0.3715
WVFGRD96   80.0    55    80    30   4.03 0.3737
WVFGRD96   81.0    55    80    30   4.03 0.3754
WVFGRD96   82.0    55    80    30   4.03 0.3770
WVFGRD96   83.0    55    80    30   4.03 0.3784
WVFGRD96   84.0    55    80    35   4.03 0.3809
WVFGRD96   85.0    60    70    30   4.04 0.3808
WVFGRD96   86.0    60    70    30   4.04 0.3845
WVFGRD96   87.0    60    70    30   4.04 0.3848
WVFGRD96   88.0    60    70    35   4.04 0.3879
WVFGRD96   89.0    60    70    35   4.05 0.3893
WVFGRD96   90.0    60    70    35   4.05 0.3906
WVFGRD96   91.0    60    70    40   4.05 0.3932
WVFGRD96   92.0    60    70    40   4.05 0.3936
WVFGRD96   93.0    60    70    40   4.05 0.3972
WVFGRD96   94.0    60    70    40   4.05 0.3973
WVFGRD96   95.0    60    70    45   4.05 0.3996
WVFGRD96   96.0    60    70    45   4.06 0.4019
WVFGRD96   97.0    60    70    45   4.06 0.4025
WVFGRD96   98.0    60    70    45   4.06 0.4054
WVFGRD96   99.0    60    70    45   4.06 0.4053
WVFGRD96  100.0    60    70    45   4.06 0.4072
WVFGRD96  101.0    65    65    45   4.06 0.4088
WVFGRD96  102.0    60    70    50   4.06 0.4085
WVFGRD96  103.0    60    70    50   4.06 0.4114
WVFGRD96  104.0    60    70    50   4.07 0.4121
WVFGRD96  105.0    60    70    50   4.07 0.4127
WVFGRD96  106.0    60    70    50   4.07 0.4151
WVFGRD96  107.0    60    70    50   4.07 0.4141
WVFGRD96  108.0    65    65    50   4.07 0.4161
WVFGRD96  109.0    65    65    50   4.07 0.4166
WVFGRD96  110.0    65    65    50   4.07 0.4174
WVFGRD96  111.0    65    65    50   4.07 0.4175
WVFGRD96  112.0    65    65    50   4.07 0.4196
WVFGRD96  113.0    65    65    50   4.07 0.4182
WVFGRD96  114.0    65    65    50   4.07 0.4200
WVFGRD96  115.0    65    65    50   4.08 0.4201
WVFGRD96  116.0    65    65    55   4.08 0.4193
WVFGRD96  117.0    65    65    55   4.08 0.4210
WVFGRD96  118.0    65    65    55   4.08 0.4211
WVFGRD96  119.0    65    65    55   4.08 0.4204
WVFGRD96  120.0    65    65    55   4.08 0.4213
WVFGRD96  121.0    65    65    55   4.08 0.4218
WVFGRD96  122.0    65    65    55   4.08 0.4201
WVFGRD96  123.0    65    65    55   4.08 0.4215
WVFGRD96  124.0    65    65    55   4.08 0.4209
WVFGRD96  125.0    65    65    55   4.09 0.4203
WVFGRD96  126.0    65    65    55   4.09 0.4199
WVFGRD96  127.0    65    65    60   4.09 0.4199
WVFGRD96  128.0    65    65    60   4.09 0.4199
WVFGRD96  129.0    65    65    60   4.09 0.4175

The best solution is

WVFGRD96  121.0    65    65    55   4.08 0.4218

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.03 n 3
lp c 0.10 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Dec 7 00:25:43 CST 2015