Location

2012/08/29 12:50:55 60.314 -150.712 58.7 4.40 Alaska

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2012/08/29 12:50:55:0  60.31 -150.71  58.7 4.4 Alaska
 
 Stations used:
   AK.BMR AK.BPAW AK.BRLK AK.CNP AK.DOT AK.FIB AK.FID AK.GHO 
   AK.GLI AK.HIN AK.HOM AK.KNK AK.KTH AK.RC01 AK.RIDG AK.SAW 
   AK.SCM AK.SKN AK.SSN AT.SVW2 II.KDAK IU.COLA 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 7.85e+22 dyne-cm
  Mw = 4.53 
  Z  = 72 km
  Plane   Strike  Dip  Rake
   NP1      281    72   154
   NP2       20    65    20
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   7.85e+22     31     239
    N   0.00e+00     58      69
    P  -7.85e+22      5     332

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -4.54e+22
       Mxy     5.78e+22
       Mxz    -2.34e+22
       Myy     2.48e+22
       Myz    -2.69e+22
       Mzz     2.06e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                  P ----------------###              
              ---   ----------------######           
             -----------------------#######          
           --------------------------########        
          ---------------------------#########       
         ---------------------------###########      
        ----------------------------############     
        -###################--------############     
       ############################-#############    
       ############################------########    
       ###########################----------#####    
       ###########################-------------##    
        ######   ################---------------     
        ###### T ###############----------------     
         #####   ##############----------------      
          ####################----------------       
           ##################----------------        
             ###############---------------          
              ############----------------           
                 #######---------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.06e+22  -2.34e+22   2.69e+22 
 -2.34e+22  -4.54e+22  -5.78e+22 
  2.69e+22  -5.78e+22   2.48e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20120829125055/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 20
      DIP = 65
     RAKE = 20
       MW = 4.53
       HS = 72.0

The NDK file is 20120829125055.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
USGSMT
 USGS/SLU Moment Tensor Solution
 ENS  2012/08/29 12:50:55:0  60.31 -150.71  58.7 4.4 Alaska
 
 Stations used:
   AK.BMR AK.BPAW AK.BRLK AK.CNP AK.DOT AK.FIB AK.FID AK.GHO 
   AK.GLI AK.HIN AK.HOM AK.KNK AK.KTH AK.RC01 AK.RIDG AK.SAW 
   AK.SCM AK.SKN AK.SSN AT.SVW2 II.KDAK IU.COLA 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 7.85e+22 dyne-cm
  Mw = 4.53 
  Z  = 72 km
  Plane   Strike  Dip  Rake
   NP1      281    72   154
   NP2       20    65    20
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   7.85e+22     31     239
    N   0.00e+00     58      69
    P  -7.85e+22      5     332

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -4.54e+22
       Mxy     5.78e+22
       Mxz    -2.34e+22
       Myy     2.48e+22
       Myz    -2.69e+22
       Mzz     2.06e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                  P ----------------###              
              ---   ----------------######           
             -----------------------#######          
           --------------------------########        
          ---------------------------#########       
         ---------------------------###########      
        ----------------------------############     
        -###################--------############     
       ############################-#############    
       ############################------########    
       ###########################----------#####    
       ###########################-------------##    
        ######   ################---------------     
        ###### T ###############----------------     
         #####   ##############----------------      
          ####################----------------       
           ##################----------------        
             ###############---------------          
              ############----------------           
                 #######---------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.06e+22  -2.34e+22   2.69e+22 
 -2.34e+22  -4.54e+22  -5.78e+22 
  2.69e+22  -5.78e+22   2.48e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20120829125055/index.html
	
USGS/SLU Regional Moment Solution

12/08/29 12:50:51.00

Epicenter:  60.269 -150.709
MW 4.5

USGS/SLU REGIONAL MOMENT TENSOR
Depth  67         No. of sta: 53
Moment Tensor;   Scale 10**15 Nm
  Mrr= 1.50       Mtt=-3.34
  Mpp= 1.84       Mrt=-2.69
  Mrp= 3.18       Mtp=-4.53
 Principal axes:
  T  Val=  7.36  Plg=35  Azm=238
  N       -1.30      54       72
  P       -6.06       7      333

Best Double Couple:Mo=6.8*10**15
 NP1:Strike= 21 Dip=60 Slip=  22
 NP2:       280     71       149


Moment Tensor Solution


        

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.06 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5    10    65   -25   3.66 0.1594
WVFGRD96    1.0    25    85     5   3.66 0.1720
WVFGRD96    2.0    25    75    15   3.79 0.2303
WVFGRD96    3.0    25    65    10   3.85 0.2540
WVFGRD96    4.0    20    65    -5   3.87 0.2769
WVFGRD96    5.0    20    65    -5   3.90 0.2979
WVFGRD96    6.0    20    65    -5   3.93 0.3151
WVFGRD96    7.0    20    70    -5   3.95 0.3302
WVFGRD96    8.0    20    65   -10   3.99 0.3432
WVFGRD96    9.0    20    65   -10   4.00 0.3530
WVFGRD96   10.0    20    65   -10   4.01 0.3604
WVFGRD96   11.0    20    70   -15   4.03 0.3670
WVFGRD96   12.0    20    70   -15   4.05 0.3725
WVFGRD96   13.0    20    70   -15   4.06 0.3767
WVFGRD96   14.0    20    70   -15   4.07 0.3799
WVFGRD96   15.0    20    70   -15   4.08 0.3831
WVFGRD96   16.0    15    70   -20   4.09 0.3868
WVFGRD96   17.0    15    70   -20   4.10 0.3900
WVFGRD96   18.0    15    70   -20   4.11 0.3932
WVFGRD96   19.0    15    70   -20   4.12 0.3966
WVFGRD96   20.0    15    70   -20   4.13 0.3998
WVFGRD96   21.0    15    70   -20   4.14 0.4024
WVFGRD96   22.0    15    70   -15   4.14 0.4048
WVFGRD96   23.0    15    70   -20   4.15 0.4070
WVFGRD96   24.0    15    70   -15   4.16 0.4098
WVFGRD96   25.0    15    70   -15   4.17 0.4121
WVFGRD96   26.0    15    70   -15   4.17 0.4141
WVFGRD96   27.0    15    70   -10   4.18 0.4158
WVFGRD96   28.0    15    70   -10   4.19 0.4173
WVFGRD96   29.0    15    70   -10   4.20 0.4190
WVFGRD96   30.0    15    70   -10   4.20 0.4204
WVFGRD96   31.0    15    70   -10   4.21 0.4214
WVFGRD96   32.0    15    70    -5   4.22 0.4219
WVFGRD96   33.0    15    70    -5   4.23 0.4221
WVFGRD96   34.0    15    70    -5   4.24 0.4220
WVFGRD96   35.0    15    70     0   4.25 0.4231
WVFGRD96   36.0    15    70     0   4.26 0.4247
WVFGRD96   37.0    15    70     0   4.27 0.4262
WVFGRD96   38.0    15    70     0   4.28 0.4275
WVFGRD96   39.0    15    70     0   4.29 0.4284
WVFGRD96   40.0    15    60     5   4.34 0.4300
WVFGRD96   41.0    15    60     5   4.35 0.4305
WVFGRD96   42.0    15    60     5   4.35 0.4309
WVFGRD96   43.0    15    65     5   4.36 0.4313
WVFGRD96   44.0    15    65     5   4.37 0.4319
WVFGRD96   45.0    15    65    10   4.38 0.4327
WVFGRD96   46.0    15    65    10   4.39 0.4334
WVFGRD96   47.0    20    65    15   4.40 0.4345
WVFGRD96   48.0    20    65    15   4.40 0.4362
WVFGRD96   49.0    20    65    20   4.42 0.4388
WVFGRD96   50.0    20    65    20   4.42 0.4422
WVFGRD96   51.0    20    65    20   4.43 0.4453
WVFGRD96   52.0    20    65    20   4.44 0.4483
WVFGRD96   53.0    20    65    20   4.44 0.4513
WVFGRD96   54.0    20    65    20   4.45 0.4545
WVFGRD96   55.0    20    65    20   4.46 0.4573
WVFGRD96   56.0    20    65    20   4.46 0.4598
WVFGRD96   57.0    20    65    20   4.47 0.4625
WVFGRD96   58.0    20    65    20   4.47 0.4655
WVFGRD96   59.0    20    65    20   4.48 0.4679
WVFGRD96   60.0    20    65    20   4.48 0.4694
WVFGRD96   61.0    20    65    20   4.49 0.4711
WVFGRD96   62.0    20    65    20   4.49 0.4735
WVFGRD96   63.0    20    65    20   4.50 0.4748
WVFGRD96   64.0    20    65    20   4.50 0.4760
WVFGRD96   65.0    20    65    20   4.50 0.4774
WVFGRD96   66.0    20    65    20   4.51 0.4783
WVFGRD96   67.0    20    65    20   4.51 0.4793
WVFGRD96   68.0    20    65    20   4.51 0.4794
WVFGRD96   69.0    20    65    20   4.52 0.4803
WVFGRD96   70.0    20    65    20   4.52 0.4808
WVFGRD96   71.0    20    65    20   4.52 0.4802
WVFGRD96   72.0    20    65    20   4.53 0.4810
WVFGRD96   73.0    20    65    20   4.53 0.4803
WVFGRD96   74.0    20    65    20   4.53 0.4801
WVFGRD96   75.0    20    65    20   4.54 0.4801
WVFGRD96   76.0    20    65    20   4.54 0.4785
WVFGRD96   77.0    20    65    20   4.54 0.4788
WVFGRD96   78.0    20    65    20   4.54 0.4776
WVFGRD96   79.0    20    65    20   4.55 0.4767
WVFGRD96   80.0    20    65    20   4.55 0.4756
WVFGRD96   81.0    20    65    20   4.55 0.4742
WVFGRD96   82.0    20    65    20   4.55 0.4734
WVFGRD96   83.0    20    65    20   4.56 0.4715
WVFGRD96   84.0    20    65    20   4.56 0.4707
WVFGRD96   85.0    20    65    20   4.56 0.4688
WVFGRD96   86.0    20    65    20   4.56 0.4674
WVFGRD96   87.0    20    65    20   4.56 0.4659
WVFGRD96   88.0    25    65    20   4.56 0.4642
WVFGRD96   89.0    25    65    20   4.57 0.4631
WVFGRD96   90.0    25    65    20   4.57 0.4615
WVFGRD96   91.0    25    65    20   4.57 0.4602
WVFGRD96   92.0    25    65    20   4.57 0.4586
WVFGRD96   93.0    25    65    20   4.57 0.4570
WVFGRD96   94.0    25    70    20   4.58 0.4555
WVFGRD96   95.0    25    70    20   4.58 0.4542
WVFGRD96   96.0    25    70    20   4.58 0.4530
WVFGRD96   97.0    25    70    20   4.58 0.4515
WVFGRD96   98.0    25    70    20   4.58 0.4503
WVFGRD96   99.0    25    70    20   4.59 0.4489

The best solution is

WVFGRD96   72.0    20    65    20   4.53 0.4810

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.06 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Dec 7 00:25:31 CST 2015