Location

2012/07/06 01:22:04 61.671 -131.239 78.0 4.30 Alaska

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2012/07/06 01:22:04:0  61.67 -131.24  78.0 4.3 Alaska
 
 Stations used:
   AK.BRLK AK.CNP AK.FIB AK.GHO AK.HOM AK.PPLA AK.RC01 AK.SAW 
   AK.SCM AK.SKN AK.SSN AT.PMR 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 1.19e+23 dyne-cm
  Mw = 4.65 
  Z  = 87 km
  Plane   Strike  Dip  Rake
   NP1       65    65    40
   NP2      315    54   149
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.19e+23     45     285
    N   0.00e+00     44      92
    P  -1.19e+23      6     188

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.11e+23
       Mxy    -3.06e+22
       Mxz     2.82e+22
       Myy     5.28e+22
       Myz    -5.56e+22
       Mzz     5.85e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             ##########--------------------          
           ################------------------        
          ####################----------------       
         #######################---------------      
        ##########################------------##     
        ########   #################--------####     
       ######### T ##################------######    
       #########   ####################--########    
       ################################-#########    
       #############################-----########    
        #########################--------#######     
        #####################-------------######     
         ###############-------------------####      
          ---------------------------------###       
           --------------------------------##        
             ------------------------------          
              ----------------------------           
                 -------   ------------              
                     --- P --------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  5.85e+22   2.82e+22   5.56e+22 
  2.82e+22  -1.11e+23   3.06e+22 
  5.56e+22   3.06e+22   5.28e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20120706012204/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 65
      DIP = 65
     RAKE = 40
       MW = 4.65
       HS = 87.0

The NDK file is 20120706012204.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2012/07/06 01:22:04:0  61.67 -131.24  78.0 4.3 Alaska
 
 Stations used:
   AK.BRLK AK.CNP AK.FIB AK.GHO AK.HOM AK.PPLA AK.RC01 AK.SAW 
   AK.SCM AK.SKN AK.SSN AT.PMR 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 1.19e+23 dyne-cm
  Mw = 4.65 
  Z  = 87 km
  Plane   Strike  Dip  Rake
   NP1       65    65    40
   NP2      315    54   149
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.19e+23     45     285
    N   0.00e+00     44      92
    P  -1.19e+23      6     188

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.11e+23
       Mxy    -3.06e+22
       Mxz     2.82e+22
       Myy     5.28e+22
       Myz    -5.56e+22
       Mzz     5.85e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             ##########--------------------          
           ################------------------        
          ####################----------------       
         #######################---------------      
        ##########################------------##     
        ########   #################--------####     
       ######### T ##################------######    
       #########   ####################--########    
       ################################-#########    
       #############################-----########    
        #########################--------#######     
        #####################-------------######     
         ###############-------------------####      
          ---------------------------------###       
           --------------------------------##        
             ------------------------------          
              ----------------------------           
                 -------   ------------              
                     --- P --------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  5.85e+22   2.82e+22   5.56e+22 
  2.82e+22  -1.11e+23   3.06e+22 
  5.56e+22   3.06e+22   5.28e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20120706012204/index.html
	

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.06 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5    85    40    65   3.82 0.1911
WVFGRD96    1.0    60    80    15   3.75 0.1965
WVFGRD96    2.0    55    90    20   3.87 0.2723
WVFGRD96    3.0    35    70    25   3.93 0.3088
WVFGRD96    4.0   215    90   -25   3.95 0.3298
WVFGRD96    5.0    40    90    25   3.98 0.3549
WVFGRD96    6.0    45    85    25   4.01 0.3770
WVFGRD96    7.0    45    85    25   4.03 0.3956
WVFGRD96    8.0    45    85    25   4.07 0.4108
WVFGRD96    9.0    55    85    30   4.10 0.4207
WVFGRD96   10.0    55    85    25   4.11 0.4349
WVFGRD96   11.0   235    90   -25   4.13 0.4466
WVFGRD96   12.0    55    85    25   4.14 0.4578
WVFGRD96   13.0    55    90    25   4.15 0.4661
WVFGRD96   14.0    55    90    25   4.16 0.4726
WVFGRD96   15.0    55    90    20   4.18 0.4790
WVFGRD96   16.0    55    90    20   4.19 0.4841
WVFGRD96   17.0    55    90    20   4.19 0.4883
WVFGRD96   18.0    55    90    20   4.20 0.4929
WVFGRD96   19.0    60    85    20   4.22 0.4965
WVFGRD96   20.0    60    85    20   4.23 0.5005
WVFGRD96   21.0    60    85    20   4.24 0.5033
WVFGRD96   22.0    60    85    20   4.25 0.5061
WVFGRD96   23.0    60    85    20   4.26 0.5092
WVFGRD96   24.0    60    85    20   4.26 0.5117
WVFGRD96   25.0    60    85    20   4.27 0.5139
WVFGRD96   26.0   240    90   -20   4.28 0.5145
WVFGRD96   27.0    60    85    20   4.28 0.5174
WVFGRD96   28.0   240    90   -20   4.30 0.5181
WVFGRD96   29.0   240    90   -20   4.30 0.5199
WVFGRD96   30.0    60    90    20   4.31 0.5214
WVFGRD96   31.0   240    90   -20   4.32 0.5221
WVFGRD96   32.0    60    90    20   4.33 0.5229
WVFGRD96   33.0    60    90    20   4.34 0.5239
WVFGRD96   34.0    60    90    20   4.34 0.5244
WVFGRD96   35.0    60    90    20   4.35 0.5244
WVFGRD96   36.0    60    90    20   4.36 0.5239
WVFGRD96   37.0    60    90    20   4.38 0.5233
WVFGRD96   38.0   240    90   -20   4.39 0.5224
WVFGRD96   39.0    60    90    20   4.40 0.5215
WVFGRD96   40.0    60    90    30   4.45 0.5219
WVFGRD96   41.0    60    90    25   4.46 0.5182
WVFGRD96   42.0   240    90   -25   4.46 0.5153
WVFGRD96   43.0    60    90    25   4.47 0.5125
WVFGRD96   44.0   240    90   -25   4.48 0.5099
WVFGRD96   45.0    60    85    30   4.48 0.5078
WVFGRD96   46.0   240    90   -30   4.49 0.5048
WVFGRD96   47.0    60    85    30   4.49 0.5051
WVFGRD96   48.0    60    85    30   4.50 0.5047
WVFGRD96   49.0    60    85    30   4.50 0.5043
WVFGRD96   50.0    65    65    35   4.50 0.5072
WVFGRD96   51.0    65    65    35   4.51 0.5113
WVFGRD96   52.0    65    65    35   4.51 0.5152
WVFGRD96   53.0    65    65    35   4.52 0.5193
WVFGRD96   54.0    65    65    35   4.53 0.5244
WVFGRD96   55.0    65    65    35   4.53 0.5302
WVFGRD96   56.0    65    65    35   4.54 0.5354
WVFGRD96   57.0    65    65    35   4.54 0.5402
WVFGRD96   58.0    65    65    35   4.55 0.5459
WVFGRD96   59.0    65    65    35   4.55 0.5508
WVFGRD96   60.0    65    65    35   4.56 0.5551
WVFGRD96   61.0    65    65    35   4.56 0.5600
WVFGRD96   62.0    65    65    35   4.57 0.5645
WVFGRD96   63.0    65    65    35   4.57 0.5682
WVFGRD96   64.0    65    65    35   4.58 0.5726
WVFGRD96   65.0    70    60    40   4.58 0.5757
WVFGRD96   66.0    65    65    35   4.58 0.5797
WVFGRD96   67.0    65    65    40   4.59 0.5831
WVFGRD96   68.0    65    65    40   4.59 0.5854
WVFGRD96   69.0    65    65    40   4.60 0.5890
WVFGRD96   70.0    65    65    40   4.60 0.5915
WVFGRD96   71.0    65    65    40   4.60 0.5944
WVFGRD96   72.0    65    65    40   4.61 0.5962
WVFGRD96   73.0    65    65    40   4.61 0.5986
WVFGRD96   74.0    65    65    40   4.61 0.6004
WVFGRD96   75.0    65    65    40   4.62 0.6024
WVFGRD96   76.0    65    65    40   4.62 0.6036
WVFGRD96   77.0    65    65    40   4.62 0.6049
WVFGRD96   78.0    65    65    40   4.63 0.6065
WVFGRD96   79.0    65    65    40   4.63 0.6073
WVFGRD96   80.0    65    65    40   4.63 0.6081
WVFGRD96   81.0    65    65    40   4.64 0.6089
WVFGRD96   82.0    65    65    40   4.64 0.6097
WVFGRD96   83.0    65    65    40   4.64 0.6106
WVFGRD96   84.0    65    65    40   4.65 0.6103
WVFGRD96   85.0    65    65    40   4.65 0.6114
WVFGRD96   86.0    65    65    40   4.65 0.6110
WVFGRD96   87.0    65    65    40   4.65 0.6120
WVFGRD96   88.0    65    65    40   4.66 0.6113
WVFGRD96   89.0    65    65    40   4.66 0.6116
WVFGRD96   90.0    65    65    40   4.66 0.6116
WVFGRD96   91.0    65    65    40   4.67 0.6113
WVFGRD96   92.0    65    65    40   4.67 0.6109
WVFGRD96   93.0    65    65    40   4.67 0.6096
WVFGRD96   94.0    65    65    40   4.67 0.6102
WVFGRD96   95.0    65    65    40   4.68 0.6091
WVFGRD96   96.0    65    65    40   4.68 0.6085
WVFGRD96   97.0    65    65    40   4.68 0.6074
WVFGRD96   98.0    65    65    40   4.68 0.6062
WVFGRD96   99.0    65    65    40   4.69 0.6060
WVFGRD96  100.0    65    65    40   4.69 0.6046
WVFGRD96  101.0    65    65    40   4.69 0.6032
WVFGRD96  102.0    65    65    40   4.69 0.6021
WVFGRD96  103.0    65    65    40   4.70 0.6006
WVFGRD96  104.0    65    65    40   4.70 0.5994
WVFGRD96  105.0    65    65    40   4.70 0.5982
WVFGRD96  106.0    65    65    40   4.70 0.5954
WVFGRD96  107.0    65    65    40   4.70 0.5948
WVFGRD96  108.0    65    65    40   4.71 0.5932
WVFGRD96  109.0    65    65    40   4.71 0.5910
WVFGRD96  110.0    65    65    40   4.71 0.5897
WVFGRD96  111.0    65    65    40   4.71 0.5871
WVFGRD96  112.0    65    65    40   4.71 0.5854
WVFGRD96  113.0    65    65    40   4.72 0.5836
WVFGRD96  114.0    65    65    40   4.72 0.5814
WVFGRD96  115.0    65    65    40   4.72 0.5788
WVFGRD96  116.0    65    65    40   4.72 0.5770
WVFGRD96  117.0    65    65    40   4.72 0.5747
WVFGRD96  118.0    65    60    40   4.71 0.5726
WVFGRD96  119.0    65    60    40   4.72 0.5715
WVFGRD96  120.0    65    60    40   4.72 0.5690
WVFGRD96  121.0    65    60    40   4.72 0.5666
WVFGRD96  122.0    65    60    40   4.72 0.5653
WVFGRD96  123.0    65    60    40   4.72 0.5630
WVFGRD96  124.0    65    60    40   4.73 0.5604
WVFGRD96  125.0    65    60    40   4.73 0.5588
WVFGRD96  126.0    65    60    40   4.73 0.5562
WVFGRD96  127.0    65    60    40   4.73 0.5537
WVFGRD96  128.0    65    60    40   4.73 0.5513
WVFGRD96  129.0    65    60    40   4.73 0.5496

The best solution is

WVFGRD96   87.0    65    65    40   4.65 0.6120

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.06 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Dec 7 00:25:05 CST 2015