Location

2011/11/06 15:07:05 35.535 -96.909 5 3.90 Oklahoma

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2011/11/06 15:07:05:8  35.53  -96.91   5.0 3.9 Oklahoma
 
 Stations used:
   AG.HHAR TA.Q34A TA.Q35A TA.Q36A TA.R34A TA.R35A TA.R36A 
   TA.R37A TA.R38A TA.S34A TA.S35A TA.S36A TA.S37A TA.S38A 
   TA.S39A TA.T34A TA.T35A TA.T36A TA.T38A TA.T39A TA.TUL1 
   TA.U32A TA.U35A TA.U36A TA.U37A TA.U38A TA.U40A TA.V35A 
   TA.V36A TA.V37A TA.V38A TA.V39A TA.V40A TA.W35A TA.W36A 
   TA.W37B TA.W38A TA.W39A TA.W40A TA.X35A TA.X36A TA.X38A 
   TA.X39A TA.Y35A TA.Y36A TA.Y37A TA.Y39A TA.Y40A TA.Z37A 
   US.KSU1 US.MIAR 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 5.13e+21 dyne-cm
  Mw = 3.74 
  Z  = 3 km
  Plane   Strike  Dip  Rake
   NP1      320    85   -15
   NP2       51    75   -175
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.13e+21      7       7
    N   0.00e+00     74     122
    P  -5.13e+21     14     275

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     4.96e+21
       Mxy     9.70e+20
       Mxz     5.10e+20
       Myy    -4.72e+21
       Myz     1.28e+21
       Mzz    -2.30e+20
                                                     
                                                     
                                                     
                                                     
                     ######## T ###                  
                 ############   #######              
              -###########################           
             ----##########################          
           --------#########################-        
          -----------######################---       
         -------------####################-----      
        ----------------################--------     
        ------------------#############---------     
       -   ----------------##########------------    
       - P ------------------######--------------    
       -   -------------------###----------------    
       ------------------------#-----------------    
        --------------------#####---------------     
        ------------------#########-------------     
         --------------#############-----------      
          ---------###################--------       
           ----########################------        
             ###########################---          
              ###########################-           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -2.30e+20   5.10e+20  -1.28e+21 
  5.10e+20   4.96e+21  -9.70e+20 
 -1.28e+21  -9.70e+20  -4.72e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20111106150705/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 320
      DIP = 85
     RAKE = -15
       MW = 3.74
       HS = 3.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
USGSMT
 USGS/SLU Moment Tensor Solution
 ENS  2011/11/06 15:07:05:8  35.53  -96.91   5.0 3.9 Oklahoma
 
 Stations used:
   AG.HHAR TA.Q34A TA.Q35A TA.Q36A TA.R34A TA.R35A TA.R36A 
   TA.R37A TA.R38A TA.S34A TA.S35A TA.S36A TA.S37A TA.S38A 
   TA.S39A TA.T34A TA.T35A TA.T36A TA.T38A TA.T39A TA.TUL1 
   TA.U32A TA.U35A TA.U36A TA.U37A TA.U38A TA.U40A TA.V35A 
   TA.V36A TA.V37A TA.V38A TA.V39A TA.V40A TA.W35A TA.W36A 
   TA.W37B TA.W38A TA.W39A TA.W40A TA.X35A TA.X36A TA.X38A 
   TA.X39A TA.Y35A TA.Y36A TA.Y37A TA.Y39A TA.Y40A TA.Z37A 
   US.KSU1 US.MIAR 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 5.13e+21 dyne-cm
  Mw = 3.74 
  Z  = 3 km
  Plane   Strike  Dip  Rake
   NP1      320    85   -15
   NP2       51    75   -175
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.13e+21      7       7
    N   0.00e+00     74     122
    P  -5.13e+21     14     275

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     4.96e+21
       Mxy     9.70e+20
       Mxz     5.10e+20
       Myy    -4.72e+21
       Myz     1.28e+21
       Mzz    -2.30e+20
                                                     
                                                     
                                                     
                                                     
                     ######## T ###                  
                 ############   #######              
              -###########################           
             ----##########################          
           --------#########################-        
          -----------######################---       
         -------------####################-----      
        ----------------################--------     
        ------------------#############---------     
       -   ----------------##########------------    
       - P ------------------######--------------    
       -   -------------------###----------------    
       ------------------------#-----------------    
        --------------------#####---------------     
        ------------------#########-------------     
         --------------#############-----------      
          ---------###################--------       
           ----########################------        
             ###########################---          
              ###########################-           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -2.30e+20   5.10e+20  -1.28e+21 
  5.10e+20   4.96e+21  -9.70e+20 
 -1.28e+21  -9.70e+20  -4.72e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20111106150705/index.html
	
USGS/SLU Regional Moment Solution
OKLAHOMA

11/11/06 15:07:06.79

Epicenter:  35.550  -96.837
MW 3.8

USGS/SLU REGIONAL MOMENT TENSOR
Depth   5         No. of sta: 27
Moment Tensor;   Scale 10**14 Nm
  Mrr=-0.78       Mtt= 6.61
  Mpp=-5.83       Mrt=-1.30
  Mrp=-3.29       Mtp=-1.26
 Principal axes:
  T  Val=  6.87  Plg= 8  Azm=184
  N        0.79      62       78
  P       -7.66      27      278

Best Double Couple:Mo=7.3*10**14
 NP1:Strike= 53 Dip=78 Slip=-155
 NP2:       318     65       -14



< IMG SRC="b0006ku4_rmt_smt.gif">

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.06 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   320    80   -25   3.59 0.3964
WVFGRD96    1.0   320    80   -20   3.62 0.4211
WVFGRD96    2.0   320    80   -20   3.71 0.4926
WVFGRD96    3.0   320    85   -15   3.74 0.5097
WVFGRD96    4.0   140    90    15   3.77 0.5068
WVFGRD96    5.0   140    90    20   3.80 0.4985
WVFGRD96    6.0   320    90   -25   3.82 0.4935
WVFGRD96    7.0   320    90   -30   3.84 0.4932
WVFGRD96    8.0   145    85    35   3.88 0.4975
WVFGRD96    9.0   320    90   -35   3.89 0.4894
WVFGRD96   10.0   145    65    20   3.90 0.4871
WVFGRD96   11.0   145    65    20   3.91 0.4838
WVFGRD96   12.0   145    65    20   3.91 0.4793
WVFGRD96   13.0   145    70    20   3.92 0.4736
WVFGRD96   14.0   145    70    20   3.92 0.4672
WVFGRD96   15.0   145    70    20   3.93 0.4601
WVFGRD96   16.0   145    70    10   3.93 0.4532
WVFGRD96   17.0   140    65   -10   3.94 0.4486
WVFGRD96   18.0   140    65   -10   3.95 0.4434
WVFGRD96   19.0   140    65   -10   3.95 0.4374
WVFGRD96   20.0   140    65   -10   3.96 0.4310
WVFGRD96   21.0   140    75   -20   3.97 0.4255
WVFGRD96   22.0   140    75   -20   3.98 0.4211
WVFGRD96   23.0   140    80   -20   3.98 0.4169
WVFGRD96   24.0   140    80   -20   3.99 0.4124
WVFGRD96   25.0   140    80   -20   4.00 0.4070
WVFGRD96   26.0   140    80   -20   4.01 0.4012
WVFGRD96   27.0   140    80   -20   4.01 0.3949
WVFGRD96   28.0   140    85   -20   4.02 0.3892
WVFGRD96   29.0   140    85   -20   4.03 0.3836

The best solution is

WVFGRD96    3.0   320    85   -15   3.74 0.5097

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.06 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Sun Nov 6 14:48:35 CST 2011

Last Changed 2011/11/06