Location

2011/10/01 07:07:01 38.883 -118.781 10 4.60 Nevada

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2011/10/01 07:07:01:0  38.88 -118.78  10.0 4.6 Nevada
 
 Stations used:
   BK.CMB BK.HUMO BK.MOD BK.SAO BK.WDC BK.YBH CI.GSC CI.ISA 
   CI.LDF CI.MWC CI.OSI CI.PASC LB.BMN LB.DAC NC.AFD NC.KBO 
   NC.KHMB NC.MDPB NN.BEK NN.PAH NN.PNT NN.RUB NN.TVH1 NN.TVH2 
   NN.TVH3 NN.VCN UU.BGU UU.LCMT UU.NLU UW.TREE 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 2.04e+22 dyne-cm
  Mw = 4.14 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1      153    80   -165
   NP2       60    75   -10
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.04e+22      4     286
    N   0.00e+00     72     184
    P  -2.04e+22     18      17

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.55e+22
       Mxy    -1.05e+22
       Mxz    -5.26e+21
       Myy     1.73e+22
       Myz    -2.97e+21
       Mzz    -1.77e+21
                                                     
                                                     
                                                     
                                                     
                     -----------                     
                 ##------------- P ----              
              #####-------------   -------           
             #######-----------------------          
           #########-------------------------        
          ###########-------------------------       
         ############------------------------##      
          ############---------------------#####     
        T #############------------------#######     
          ##############---------------##########    
       ##################-----------#############    
       ###################--------###############    
       ####################----##################    
        ########################################     
        ################-----###################     
         ##########-----------#################      
          ##-------------------###############       
           ---------------------#############        
             ---------------------#########          
              ---------------------#######           
                 --------------------##              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.77e+21  -5.26e+21   2.97e+21 
 -5.26e+21  -1.55e+22   1.05e+22 
  2.97e+21   1.05e+22   1.73e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20111001070701/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 60
      DIP = 75
     RAKE = -10
       MW = 4.14
       HS = 10.0

The NDK file is 20111001070701.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
UNR
 USGS/SLU Moment Tensor Solution
 ENS  2011/10/01 07:07:01:0  38.88 -118.78  10.0 4.6 Nevada
 
 Stations used:
   BK.CMB BK.HUMO BK.MOD BK.SAO BK.WDC BK.YBH CI.GSC CI.ISA 
   CI.LDF CI.MWC CI.OSI CI.PASC LB.BMN LB.DAC NC.AFD NC.KBO 
   NC.KHMB NC.MDPB NN.BEK NN.PAH NN.PNT NN.RUB NN.TVH1 NN.TVH2 
   NN.TVH3 NN.VCN UU.BGU UU.LCMT UU.NLU UW.TREE 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 2.04e+22 dyne-cm
  Mw = 4.14 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1      153    80   -165
   NP2       60    75   -10
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.04e+22      4     286
    N   0.00e+00     72     184
    P  -2.04e+22     18      17

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.55e+22
       Mxy    -1.05e+22
       Mxz    -5.26e+21
       Myy     1.73e+22
       Myz    -2.97e+21
       Mzz    -1.77e+21
                                                     
                                                     
                                                     
                                                     
                     -----------                     
                 ##------------- P ----              
              #####-------------   -------           
             #######-----------------------          
           #########-------------------------        
          ###########-------------------------       
         ############------------------------##      
          ############---------------------#####     
        T #############------------------#######     
          ##############---------------##########    
       ##################-----------#############    
       ###################--------###############    
       ####################----##################    
        ########################################     
        ################-----###################     
         ##########-----------#################      
          ##-------------------###############       
           ---------------------#############        
             ---------------------#########          
              ---------------------#######           
                 --------------------##              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.77e+21  -5.26e+21   2.97e+21 
 -5.26e+21  -1.55e+22   1.05e+22 
  2.97e+21   1.05e+22   1.73e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20111001070701/index.html
	
REVIEWED BY NSL STAFF

Event ID:349692
Origin ID:838886
Algorithm: Ichinose (2003) Long Period, Regional-Distance Waves
Seismic Moment Tensor Solution

2011/10/01 (274) 07:07:02.00 38.8903 -118.7740 001
	Depth =   8.0 (km)
	Mw    =  4.13
	Mo    =  1.95x10^22 (dyne x cm)

	Percent Double Couple =  92 %
	Percent CLVD          =   8 %
	no ISO calculated
	Epsilon=-0.04
	 Percent Variance Reduction =  84.83 %
	 Total Fit                  =  8.93 
	Major Double Couple
		            strike dip   rake
		Nodal Plane 1:  59  71  -14
		Nodal Plane 2: 154  76 -161

	DEVIATORIC MOMENT TENSOR

	Moment Tensor Elements: Spherical Coordinates
		Mrr= -0.36 Mtt= -1.33 Mff=  1.69
		Mrt= -0.60 Mrf=  0.32 Mtf=  0.98 EXP=22


	Moment Tensor Elements: Cartesian Coordinates
		-1.33 -0.98 -0.60
		-0.98  1.69 -0.32
		-0.60 -0.32 -0.36

	Eigenvalues:
		T-axis eigenvalue=  1.99
		N-axis eigenvalue= -0.08
		P-axis eigenvalue= -1.91

	Eigenvalues and eigenvectors of the Major Double Couple:
		T-axis ev= 1.99 trend=286 plunge=4
		N-axis ev= 0.00 trend=188 plunge=66
		P-axis ev=-1.99 trend=17 plunge=23

	Maximum Azmuithal Gap=67 Distance to Nearest Station= 60.9 (km)

	Number of Stations (D=Displacement/V=Velocity) Used=21 (defining only)
		
	 KVN.NN.D WAK.NN.D PNT.NN.D VCN.NN.D
	 PAH.NN.D RUB.NN.D BEK.NN.D TIN.CI.D
	 BMN.LB.D GRA.CI.D R11A.TA.D DAC.LB.D
	 TPNV.US.D HATC.BK.D FUR.CI.D BRK.BK.D
	 LRL.CI.D SHO.CI.D SHP.NN.D TUQ.CI.D
	 L04D.TA.D


              ------------   --                             
          ####------------ P ------                         
        ######------------   --------                       
      ########-------------------------                     
     #########--------------------------                    
    ###########--------------------------                   
  -############-------------------------###                 
  ##############----------------------#####                 
T ###############--------------------#######                
  ###############------------------#########                
 #################---------------############               
 ##################------------##############               
 ###################---------################               
 ####################-----###################               
 #####################-#####################                
 ###########################################                
  ##################--#####################                 
   ############--------####################                 
   ######---------------##################                  
     ---------------------###############                   
      ---------------------############                     
        ---------------------########                       
          --------------------#####                         
              -----------------                             
                                                            


All Stations defining and nondefining: 
Station.Net 	Def 	Distance 	Azi    	Bazi  	lo-f 	hi-f vmodel
            	    	(km)     	(deg)  	(deg) 	(Hz) 	(Hz)    
KVN.NN (D) 	Y 	    60.9  	 73  	253  	0.020 	0.080 KVN.NN.wus.glib
WAK.NN (D) 	Y 	    72.2  	233  	 53  	0.020 	0.080 WAK.NN.wus.glib
PNT.NN (D) 	Y 	    74.7  	288  	107  	0.020 	0.080 PNT.NN.wus.glib
VCN.NN (D) 	Y 	    88.2  	301  	121  	0.020 	0.080 VCN.NN.wus.glib
PAH.NN (D) 	Y 	   105.4  	330  	150  	0.020 	0.080 PAH.NN.wus.glib
RUB.NN (D) 	Y 	   120.2  	279  	 98  	0.020 	0.080 RUB.NN.wus.glib
BEK.NN (D) 	Y 	   174.4  	309  	128  	0.020 	0.080 BEK.NN.wus.glib
TIN.CI (D) 	Y 	   210.0  	167  	347  	0.020 	0.080 TIN.CI.wus.glib
BMN.LB (D) 	Y 	   216.6  	 37  	218  	0.020 	0.080 BMN.LB.wus.glib
GRA.CI (D) 	Y 	   243.4  	149  	330  	0.020 	0.080 GRA.CI.wus.glib
R11A.TA (D) 	Y 	   282.8  	101  	283  	0.020 	0.080 R11A.TA.wus.glib
DAC.LB (D) 	Y 	   308.2  	160  	341  	0.020 	0.080 DAC.LB.wus.glib
TPNV.US (D) 	Y 	   308.9  	133  	315  	0.020 	0.080 TPNV.US.wus.glib
HATC.BK (D) 	Y 	   313.8  	314  	132  	0.020 	0.080 HATC.BK.wus.glib
FUR.CI (D) 	Y 	   317.2  	147  	329  	0.020 	0.080 FUR.CI.wus.glib
BRK.BK (D) 	Y 	   324.1  	251  	 68  	0.020 	0.080 BRK.BK.wus.glib
LRL.CI (D) 	Y 	   391.1  	165  	346  	0.020 	0.080 LRL.CI.wus.glib
SHO.CI (D) 	Y 	   398.5  	146  	327  	0.020 	0.080 SHO.CI.wus.glib
SHP.NN (D) 	Y 	   414.1  	129  	311  	0.020 	0.080 SHP.NN.wus.glib
TUQ.CI (D) 	Y 	   459.1  	146  	327  	0.020 	0.080 TUQ.CI.wus.glib
L04D.TA (D) 	Y 	   474.7  	322  	140  	0.020 	0.080 L04D.TA.wus.glib

 (V)-velocity (D)-Displacement

Author: www-data
Date: 2011/10/01 10:34:11

mtinv Version 2.1_DEVEL OCT2008





        

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.06 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   245    85    35   4.01 0.4483
WVFGRD96    1.0   245    85    35   4.03 0.4741
WVFGRD96    2.0   245    80    20   4.03 0.5156
WVFGRD96    3.0    60    80   -20   4.06 0.5477
WVFGRD96    4.0    60    75   -20   4.08 0.5766
WVFGRD96    5.0    60    75   -20   4.10 0.5970
WVFGRD96    6.0    60    75   -15   4.11 0.6113
WVFGRD96    7.0    60    75   -15   4.11 0.6199
WVFGRD96    8.0    60    75   -15   4.12 0.6237
WVFGRD96    9.0    60    75   -10   4.13 0.6258
WVFGRD96   10.0    60    75   -10   4.14 0.6273
WVFGRD96   11.0    60    75   -10   4.14 0.6228
WVFGRD96   12.0    60    75   -10   4.15 0.6164
WVFGRD96   13.0    60    75   -10   4.15 0.6085
WVFGRD96   14.0    60    75    -5   4.16 0.6012
WVFGRD96   15.0    60    75    -5   4.16 0.5934
WVFGRD96   16.0    60    75    -5   4.17 0.5859
WVFGRD96   17.0    60    75     5   4.18 0.5838
WVFGRD96   18.0    60    75     5   4.18 0.5811
WVFGRD96   19.0    60    75     5   4.19 0.5784
WVFGRD96   20.0    60    75     5   4.20 0.5749
WVFGRD96   21.0    60    75     5   4.21 0.5700
WVFGRD96   22.0    60    75     5   4.21 0.5647
WVFGRD96   23.0    60    75     5   4.22 0.5589
WVFGRD96   24.0    60    75     5   4.22 0.5527
WVFGRD96   25.0    60    75    10   4.23 0.5463
WVFGRD96   26.0    60    75    10   4.23 0.5398
WVFGRD96   27.0    60    75    10   4.24 0.5331
WVFGRD96   28.0    60    75    10   4.25 0.5265
WVFGRD96   29.0    60    75    10   4.25 0.5198

The best solution is

WVFGRD96   10.0    60    75   -10   4.14 0.6273

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.06 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The CUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
CUS Model with Q from simple gamma values
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
  H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC)   QP   QS  ETAP  ETAS  FREFP  FREFS
  1.0000  5.0000  2.8900  2.5000 0.172E-02 0.387E-02 0.00  0.00  1.00  1.00 
  9.0000  6.1000  3.5200  2.7300 0.160E-02 0.363E-02 0.00  0.00  1.00  1.00 
 10.0000  6.4000  3.7000  2.8200 0.149E-02 0.336E-02 0.00  0.00  1.00  1.00 
 20.0000  6.7000  3.8700  2.9020 0.000E-04 0.000E-04 0.00  0.00  1.00  1.00 
  0.0000  8.1500  4.7000  3.3640 0.194E-02 0.431E-02 0.00  0.00  1.00  1.00 

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Sun Dec 6 22:58:28 CST 2015