Location

2011/08/17 21:04:39 38.445 -118.726 4 3.90 Nevada

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2011/08/17 21:04:39:0  38.44 -118.73   4.0 3.9 Nevada
 
 Stations used:
   AR.W13A BK.CMB BK.HATC BK.HELL BK.HUMO BK.JCC BK.MOD BK.ORV 
   BK.SAO BK.WDC CI.PASC II.PFO LB.BMN LB.DAC NN.KVN NN.PAH 
   NN.PNT NN.RUB NN.SHP NN.WAK NN.YER US.DUG US.TPNV 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 4.03e+21 dyne-cm
  Mw = 3.67 
  Z  = 5 km
  Plane   Strike  Dip  Rake
   NP1      245    90     5
   NP2      155    85   180
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.03e+21      4     110
    N   0.00e+00     85     245
    P  -4.03e+21      4      20

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.07e+21
       Mxy    -2.58e+21
       Mxz    -3.18e+20
       Myy     3.07e+21
       Myz     1.48e+20
       Mzz    -3.07e+13
                                                     
                                                     
                                                     
                                                     
                     ------------ P                  
                 ###-------------   ---              
              ######----------------------           
             ########----------------------          
           ##########------------------------        
          ############------------------------       
         ##############-----------------------#      
        ################------------------######     
        #################-------------##########     
       ##################---------###############    
       ###################----###################    
       ###################-######################    
       ###############------#####################    
        ##########-----------################        
        ######----------------############### T      
         #---------------------##############        
          ----------------------##############       
           ----------------------############        
             ---------------------#########          
              ---------------------#######           
                 -------------------###              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.07e+13  -3.18e+20  -1.48e+20 
 -3.18e+20  -3.07e+21   2.58e+21 
 -1.48e+20   2.58e+21   3.07e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110817210439/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 245
      DIP = 90
     RAKE = 5
       MW = 3.67
       HS = 5.0

The NDK file is 20110817210439.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
UNR
 USGS/SLU Moment Tensor Solution
 ENS  2011/08/17 21:04:39:0  38.44 -118.73   4.0 3.9 Nevada
 
 Stations used:
   AR.W13A BK.CMB BK.HATC BK.HELL BK.HUMO BK.JCC BK.MOD BK.ORV 
   BK.SAO BK.WDC CI.PASC II.PFO LB.BMN LB.DAC NN.KVN NN.PAH 
   NN.PNT NN.RUB NN.SHP NN.WAK NN.YER US.DUG US.TPNV 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 4.03e+21 dyne-cm
  Mw = 3.67 
  Z  = 5 km
  Plane   Strike  Dip  Rake
   NP1      245    90     5
   NP2      155    85   180
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.03e+21      4     110
    N   0.00e+00     85     245
    P  -4.03e+21      4      20

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.07e+21
       Mxy    -2.58e+21
       Mxz    -3.18e+20
       Myy     3.07e+21
       Myz     1.48e+20
       Mzz    -3.07e+13
                                                     
                                                     
                                                     
                                                     
                     ------------ P                  
                 ###-------------   ---              
              ######----------------------           
             ########----------------------          
           ##########------------------------        
          ############------------------------       
         ##############-----------------------#      
        ################------------------######     
        #################-------------##########     
       ##################---------###############    
       ###################----###################    
       ###################-######################    
       ###############------#####################    
        ##########-----------################        
        ######----------------############### T      
         #---------------------##############        
          ----------------------##############       
           ----------------------############        
             ---------------------#########          
              ---------------------#######           
                 -------------------###              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.07e+13  -3.18e+20  -1.48e+20 
 -3.18e+20  -3.07e+21   2.58e+21 
 -1.48e+20   2.58e+21   3.07e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110817210439/index.html
	

REVIEWED BY NSL STAFF

Event ID:345424
Origin ID:825668
Algorithm: Ichinose (2003) Long Period, Regional-Distance Waves
Seismic Moment Tensor Solution

2011/08/17 (229) 21:04:39.00 38.4453 -118.7206 825699
	Depth =   4.0 (km)
	Mw    =  3.70
	Mo    =  4.34x10^21 (dyne x cm)

	Percent Double Couple =  94 %
	Percent CLVD          =   6 %
	no ISO calculated
	Epsilon=-0.03
	 Percent Variance Reduction =  61.91 %
	 Total Fit                  =  8.45 
	Major Double Couple
		            strike dip   rake
		Nodal Plane 1: 335  78 -174
		Nodal Plane 2: 244  84  -12

	DEVIATORIC MOMENT TENSOR

	Moment Tensor Elements: Spherical Coordinates
		Mrr= -0.32 Mtt= -3.09 Mff=  3.41
		Mrt=  0.96 Mrf=  0.00 Mtf=  2.70 EXP=21


	Moment Tensor Elements: Cartesian Coordinates
		-3.09 -2.70  0.96
		-2.70  3.41 -0.00
		 0.96 -0.00 -0.32

	Eigenvalues:
		T-axis eigenvalue=  4.41
		N-axis eigenvalue= -0.14
		P-axis eigenvalue= -4.27

	Eigenvalues and eigenvectors of the Major Double Couple:
		T-axis ev= 4.41 trend=290 plunge=4
		N-axis ev= 0.00 trend=37 plunge=76
		P-axis ev=-4.41 trend=199 plunge=13

	Maximum Azmuithal Gap=148 Distance to Nearest Station= 62.9 (km)

	Number of Stations (D=Displacement/V=Velocity) Used=7 (defining only)
		
	 WAK.NN.D YER.NN.D KVN.NN.D MLAC.CI.D
	 PNT.NN.D RUB.NN.D PAH.NN.D


              -----------------                             
          #####--------------------                         
        #########--------------------                       
      ############---------------------                     
     ###############--------------------                    
    #################--------------------                   
  -###################-------------------##                 
T #####################------------########                 
  ######################------##############                
 ########################-##################                
 ############################################               
 ######################--####################               
 ##################-------###################               
 ###############----------###################               
 ############--------------#################                
 ########-------------------################                
  ####----------------------###############                 
   #-------------------------##############                 
   ---------------------------############                  
     -------------------------###########                   
      ------------------------#########                     
        -----------------------######                       
          ---   ---------------####                         
              P ---------------                             
                                                            


All Stations defining and nondefining: 
Station.Net 	Def 	Distance 	Azi    	Bazi  	lo-f 	hi-f vmodel
            	    	(km)     	(deg)  	(deg) 	(Hz) 	(Hz)    
WAK.NN (D) 	Y 	    62.9  	276  	 95  	0.020 	0.080 WAK.NN.wus.glib
YER.NN (D) 	Y 	    75.4  	324  	143  	0.020 	0.080 YER.NN.wus.glib
KVN.NN (D) 	Y 	    86.1  	 38  	219  	0.020 	0.080 KVN.NN.wus.glib
MLAC.CI (D) 	Y 	    91.2  	187  	  7  	0.020 	0.080 MLAC.CI.wus.glib
PNT.NN (D) 	Y 	   104.6  	314  	133  	0.020 	0.080 PNT.NN.wus.glib
RUB.NN (D) 	Y 	   140.9  	299  	118  	0.020 	0.080 RUB.NN.wus.glib
PAH.NN (D) 	Y 	   151.9  	338  	157  	0.020 	0.080 PAH.NN.wus.glib

 (V)-velocity (D)-Displacement

Author: www-data
Date: 2011/08/17 21:36:42

mtinv Version 2.1_DEVEL OCT2008


        

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.06 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5    65    90   -20   3.44 0.4384
WVFGRD96    1.0    65    90   -10   3.46 0.4798
WVFGRD96    2.0    65    90   -20   3.57 0.5923
WVFGRD96    3.0    65    90   -10   3.61 0.6535
WVFGRD96    4.0    65    90    -5   3.64 0.6837
WVFGRD96    5.0   245    90     5   3.67 0.6930
WVFGRD96    6.0    65    90    -5   3.69 0.6889
WVFGRD96    7.0    65    90    -5   3.71 0.6788
WVFGRD96    8.0    65    85   -10   3.74 0.6659
WVFGRD96    9.0    65    80    15   3.75 0.6491
WVFGRD96   10.0    70    70    15   3.77 0.6404
WVFGRD96   11.0    70    70    15   3.78 0.6336
WVFGRD96   12.0    70    70    15   3.79 0.6286
WVFGRD96   13.0    70    70    15   3.80 0.6229
WVFGRD96   14.0    70    70    15   3.80 0.6160
WVFGRD96   15.0    70    70    15   3.81 0.6080
WVFGRD96   16.0    70    70    15   3.82 0.5996
WVFGRD96   17.0    70    70    15   3.83 0.5908
WVFGRD96   18.0    70    70    15   3.83 0.5828
WVFGRD96   19.0    70    70    15   3.84 0.5746
WVFGRD96   20.0    70    70    15   3.85 0.5659
WVFGRD96   21.0    70    70    15   3.86 0.5573
WVFGRD96   22.0    70    70    15   3.86 0.5485
WVFGRD96   23.0    70    70    15   3.87 0.5389
WVFGRD96   24.0    70    70    15   3.87 0.5304
WVFGRD96   25.0    70    70    15   3.88 0.5216
WVFGRD96   26.0    70    70    15   3.89 0.5128
WVFGRD96   27.0    70    70    15   3.89 0.5043
WVFGRD96   28.0    70    70    15   3.90 0.4960
WVFGRD96   29.0    70    65    10   3.90 0.4892

The best solution is

WVFGRD96    5.0   245    90     5   3.67 0.6930

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.06 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Sun Dec 6 20:57:32 CST 2015