Location

2011/08/08 16:00:48 58.212 -151.511 45 4.30 Alaska

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2011/08/08 16:00:48:0  58.21 -151.51  45.0 4.3 Alaska
 
 Stations used:
   AK.BMR AK.BRLK AK.CAST AK.CNP AK.DIV AK.EYAK AK.FID AK.GHO 
   AK.HOM AK.KNK AK.KTH AK.PPLA AK.RC01 AK.RND AK.SAW AK.SCM 
   AK.SSN AK.SWD AK.TRF AT.OHAK AT.PMR AT.SVW2 II.KDAK 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 5.01e+22 dyne-cm
  Mw = 4.40 
  Z  = 40 km
  Plane   Strike  Dip  Rake
   NP1       10    60   -125
   NP2      245    45   -45
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.01e+22      8     125
    N   0.00e+00     30      30
    P  -5.01e+22     59     229

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     9.91e+21
       Mxy    -2.97e+22
       Mxz     1.06e+22
       Myy     2.55e+22
       Myz     2.27e+22
       Mzz    -3.54e+22
                                                     
                                                     
                                                     
                                                     
                     ###########---                  
                 #################-----              
              ####################--------           
             ######################--------          
           #################-------#####-----        
          #############-------------#########-       
         ###########----------------###########      
        #########-------------------############     
        #######---------------------############     
       #######----------------------#############    
       #####------------------------#############    
       ####-------------------------#############    
       ###-----------   -----------##############    
        ##----------- P -----------#############     
        #------------   ----------##############     
         -------------------------#########   #      
          -----------------------########## T        
           ---------------------###########          
             ------------------############          
              ---------------#############           
                 -----------###########              
                     -----#########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.54e+22   1.06e+22  -2.27e+22 
  1.06e+22   9.91e+21   2.97e+22 
 -2.27e+22   2.97e+22   2.55e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110808160048/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 245
      DIP = 45
     RAKE = -45
       MW = 4.40
       HS = 40.0

The NDK file is 20110808160048.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2011/08/08 16:00:48:0  58.21 -151.51  45.0 4.3 Alaska
 
 Stations used:
   AK.BMR AK.BRLK AK.CAST AK.CNP AK.DIV AK.EYAK AK.FID AK.GHO 
   AK.HOM AK.KNK AK.KTH AK.PPLA AK.RC01 AK.RND AK.SAW AK.SCM 
   AK.SSN AK.SWD AK.TRF AT.OHAK AT.PMR AT.SVW2 II.KDAK 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 5.01e+22 dyne-cm
  Mw = 4.40 
  Z  = 40 km
  Plane   Strike  Dip  Rake
   NP1       10    60   -125
   NP2      245    45   -45
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.01e+22      8     125
    N   0.00e+00     30      30
    P  -5.01e+22     59     229

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     9.91e+21
       Mxy    -2.97e+22
       Mxz     1.06e+22
       Myy     2.55e+22
       Myz     2.27e+22
       Mzz    -3.54e+22
                                                     
                                                     
                                                     
                                                     
                     ###########---                  
                 #################-----              
              ####################--------           
             ######################--------          
           #################-------#####-----        
          #############-------------#########-       
         ###########----------------###########      
        #########-------------------############     
        #######---------------------############     
       #######----------------------#############    
       #####------------------------#############    
       ####-------------------------#############    
       ###-----------   -----------##############    
        ##----------- P -----------#############     
        #------------   ----------##############     
         -------------------------#########   #      
          -----------------------########## T        
           ---------------------###########          
             ------------------############          
              ---------------#############           
                 -----------###########              
                     -----#########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.54e+22   1.06e+22  -2.27e+22 
  1.06e+22   9.91e+21   2.97e+22 
 -2.27e+22   2.97e+22   2.55e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110808160048/index.html
	

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.06 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   215    45    90   3.76 0.2382
WVFGRD96    1.0   300    45    90   3.63 0.2482
WVFGRD96    2.0   120    45    90   3.73 0.3156
WVFGRD96    3.0   305    45    95   3.82 0.3525
WVFGRD96    4.0   100    50    60   3.85 0.3310
WVFGRD96    5.0    85    65    35   3.83 0.3028
WVFGRD96    6.0    80    90   -30   3.83 0.2932
WVFGRD96    7.0   260    90    30   3.85 0.3013
WVFGRD96    8.0   260    90    35   3.89 0.3114
WVFGRD96    9.0   260    90    40   3.90 0.3196
WVFGRD96   10.0    75    80   -35   3.92 0.3342
WVFGRD96   11.0   245    60   -35   3.95 0.3528
WVFGRD96   12.0   245    60   -35   3.96 0.3740
WVFGRD96   13.0   245    60   -40   3.98 0.3948
WVFGRD96   14.0   245    60   -40   4.00 0.4144
WVFGRD96   15.0   245    55   -40   4.01 0.4335
WVFGRD96   16.0   245    55   -40   4.03 0.4514
WVFGRD96   17.0   245    55   -40   4.04 0.4684
WVFGRD96   18.0   245    55   -40   4.05 0.4839
WVFGRD96   19.0   245    55   -40   4.06 0.4981
WVFGRD96   20.0   245    55   -40   4.08 0.5114
WVFGRD96   21.0   245    55   -40   4.10 0.5226
WVFGRD96   22.0   245    55   -40   4.11 0.5345
WVFGRD96   23.0   245    55   -45   4.12 0.5458
WVFGRD96   24.0   245    55   -45   4.13 0.5564
WVFGRD96   25.0   245    55   -45   4.14 0.5661
WVFGRD96   26.0   245    55   -45   4.15 0.5750
WVFGRD96   27.0   245    55   -45   4.16 0.5829
WVFGRD96   28.0   245    55   -45   4.17 0.5902
WVFGRD96   29.0   245    55   -45   4.19 0.5964
WVFGRD96   30.0   245    50   -45   4.20 0.6018
WVFGRD96   31.0   245    50   -45   4.21 0.6064
WVFGRD96   32.0   245    50   -45   4.22 0.6096
WVFGRD96   33.0   250    55   -40   4.22 0.6114
WVFGRD96   34.0   250    55   -40   4.23 0.6128
WVFGRD96   35.0   250    55   -40   4.24 0.6128
WVFGRD96   36.0   250    50   -40   4.25 0.6118
WVFGRD96   37.0   250    50   -40   4.26 0.6094
WVFGRD96   38.0   250    55   -40   4.26 0.6052
WVFGRD96   39.0   250    55   -40   4.26 0.5996
WVFGRD96   40.0   245    45   -45   4.40 0.6174
WVFGRD96   41.0   245    45   -45   4.40 0.6160
WVFGRD96   42.0   245    45   -50   4.42 0.6131
WVFGRD96   43.0   245    40   -50   4.43 0.6102
WVFGRD96   44.0   245    40   -50   4.44 0.6068
WVFGRD96   45.0   245    40   -50   4.45 0.6021
WVFGRD96   46.0   245    40   -50   4.45 0.5962
WVFGRD96   47.0   245    40   -50   4.46 0.5894
WVFGRD96   48.0   245    40   -50   4.47 0.5818
WVFGRD96   49.0   245    40   -50   4.47 0.5735
WVFGRD96   50.0   245    35   -50   4.48 0.5654
WVFGRD96   51.0   250    35   -45   4.49 0.5566
WVFGRD96   52.0   250    35   -45   4.49 0.5480
WVFGRD96   53.0   250    35   -45   4.49 0.5397
WVFGRD96   54.0   250    35   -45   4.50 0.5306
WVFGRD96   55.0   250    35   -45   4.50 0.5208
WVFGRD96   56.0   250    35   -45   4.50 0.5104
WVFGRD96   57.0   255    35   -40   4.50 0.5007
WVFGRD96   58.0   255    35   -40   4.51 0.4916
WVFGRD96   59.0   255    35   -40   4.51 0.4817
WVFGRD96   60.0   255    35   -40   4.51 0.4719
WVFGRD96   61.0   255    35   -40   4.51 0.4620
WVFGRD96   62.0   255    35   -40   4.51 0.4514
WVFGRD96   63.0   260    35   -35   4.51 0.4425
WVFGRD96   64.0   260    35   -35   4.51 0.4334
WVFGRD96   65.0   260    35   -35   4.51 0.4244
WVFGRD96   66.0   250    55   -30   4.46 0.4185
WVFGRD96   67.0   250    55   -30   4.46 0.4137
WVFGRD96   68.0   250    55   -30   4.46 0.4087
WVFGRD96   69.0   250    55   -30   4.46 0.4047
WVFGRD96   70.0   250    55   -30   4.47 0.4002
WVFGRD96   71.0   250    55   -30   4.47 0.3960
WVFGRD96   72.0   250    55   -30   4.47 0.3913
WVFGRD96   73.0   255    60   -25   4.46 0.3877
WVFGRD96   74.0   255    60   -25   4.46 0.3840
WVFGRD96   75.0   255    65   -25   4.46 0.3804
WVFGRD96   76.0   255    65   -25   4.46 0.3767
WVFGRD96   77.0   255    65   -25   4.46 0.3734
WVFGRD96   78.0   255    65   -25   4.46 0.3696
WVFGRD96   79.0   255    70   -25   4.46 0.3664
WVFGRD96   80.0   255    70   -25   4.46 0.3630
WVFGRD96   81.0   255    75   -25   4.47 0.3603
WVFGRD96   82.0   255    75   -25   4.47 0.3575
WVFGRD96   83.0   255    75   -25   4.47 0.3548
WVFGRD96   84.0   255    75   -25   4.47 0.3519
WVFGRD96   85.0   255    75   -25   4.47 0.3494
WVFGRD96   86.0   255    75   -25   4.47 0.3466
WVFGRD96   87.0   255    85   -25   4.48 0.3441
WVFGRD96   88.0   260    45    15   4.38 0.3370
WVFGRD96   89.0   260    45    15   4.38 0.3361
WVFGRD96   90.0   260    45    15   4.39 0.3349
WVFGRD96   91.0   260    45    15   4.39 0.3332
WVFGRD96   92.0   260    45    15   4.39 0.3324
WVFGRD96   93.0   260    45    15   4.39 0.3311
WVFGRD96   94.0   260    45    15   4.39 0.3302
WVFGRD96   95.0   260    45    20   4.39 0.3298
WVFGRD96   96.0   265    40    25   4.39 0.3282
WVFGRD96   97.0   265    40    25   4.39 0.3276
WVFGRD96   98.0   265    40    25   4.39 0.3268
WVFGRD96   99.0   265    40    25   4.39 0.3261
WVFGRD96  100.0   265    40    25   4.39 0.3247
WVFGRD96  101.0   265    40    25   4.39 0.3237
WVFGRD96  102.0   235    45   -50   4.49 0.3260
WVFGRD96  103.0   235    45   -50   4.49 0.3250
WVFGRD96  104.0   235    45   -50   4.49 0.3258
WVFGRD96  105.0   235    45   -50   4.49 0.3248
WVFGRD96  106.0   235    45   -50   4.49 0.3253
WVFGRD96  107.0   235    40   -55   4.48 0.3267
WVFGRD96  108.0   235    40   -55   4.48 0.3266
WVFGRD96  109.0   235    40   -55   4.48 0.3283
WVFGRD96  110.0   235    40   -55   4.48 0.3288
WVFGRD96  111.0   235    40   -55   4.48 0.3308
WVFGRD96  112.0   235    40   -55   4.48 0.3318
WVFGRD96  113.0   235    40   -55   4.48 0.3320
WVFGRD96  114.0   235    40   -55   4.48 0.3334
WVFGRD96  115.0   235    40   -55   4.48 0.3343
WVFGRD96  116.0   235    40   -50   4.48 0.3345
WVFGRD96  117.0   235    40   -50   4.48 0.3353
WVFGRD96  118.0   235    40   -50   4.48 0.3354
WVFGRD96  119.0   235    40   -50   4.49 0.3363
WVFGRD96  120.0   235    40   -50   4.49 0.3362
WVFGRD96  121.0   235    40   -50   4.49 0.3369
WVFGRD96  122.0   235    40   -50   4.49 0.3375
WVFGRD96  123.0   235    40   -50   4.49 0.3371
WVFGRD96  124.0   235    40   -50   4.49 0.3373
WVFGRD96  125.0   235    40   -50   4.49 0.3372
WVFGRD96  126.0   235    40   -50   4.49 0.3372
WVFGRD96  127.0   230    35   -65   4.47 0.3372
WVFGRD96  128.0   230    35   -65   4.47 0.3376
WVFGRD96  129.0   230    35   -65   4.47 0.3379

The best solution is

WVFGRD96   40.0   245    45   -45   4.40 0.6174

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.06 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Sun Dec 6 20:55:29 CST 2015