Location

2011/02/18 08:13:35 35.271 -92.377 6.3 4.30 Arkansas

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2011/02/18 08:13:35:0  35.27  -92.38   6.3 4.3 Arkansas
 
 Stations used:
   AG.CCAR AG.FCAR AG.HHAR AG.LCAR AG.WHAR AG.WLAR IU.WVT 
   NM.MGMO NM.MPH NM.OLIL NM.SIUC NM.SLM NM.UALR NM.USIN 
   NM.X102 NM.X201 TA.139A TA.140A TA.141A TA.236A TA.O34A 
   TA.O36A TA.O38A TA.O39A TA.O40A TA.P33A TA.P34A TA.P35A 
   TA.P36A TA.P38A TA.P39A TA.P40A TA.Q33A TA.Q34A TA.Q35A 
   TA.Q36A TA.Q37A TA.Q38A TA.Q39A TA.R32A TA.R33A TA.R34A 
   TA.R35A TA.R36A TA.R37A TA.R38A TA.R39A TA.R40A TA.S32A 
   TA.S33A TA.S34A TA.S35A TA.S36A TA.S37A TA.S38A TA.S39A 
   TA.S40A TA.T32A TA.T33A TA.T34A TA.T35A TA.T36A TA.T37A 
   TA.T38A TA.T39A TA.T40A TA.TUL1 TA.U31A TA.U32A TA.U33A 
   TA.U34A TA.U35A TA.U36A TA.U37A TA.U38A TA.U39A TA.U40A 
   TA.V32A TA.V33A TA.V34A TA.V35A TA.V36A TA.V37A TA.V38A 
   TA.V39A TA.W33A TA.W34A TA.W35A TA.W36A TA.W37B TA.W38A 
   TA.W39A TA.W40A TA.WHTX TA.X33A TA.X36A TA.X37A TA.X38A 
   TA.X40A TA.Y36A TA.Y37A TA.Y38A TA.Y39A TA.Y40A TA.Z37A 
   TA.Z38A TA.Z39A TA.Z40A US.KSU1 US.LRAL US.MIAR US.OXF 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 1.60e+22 dyne-cm
  Mw = 4.07 
  Z  = 8 km
  Plane   Strike  Dip  Rake
   NP1      197    81   160
   NP2      290    70    10
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.60e+22     21     152
    N   0.00e+00     68     353
    P  -1.60e+22      7     245

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     7.96e+21
       Mxy    -1.19e+22
       Mxz    -3.85e+21
       Myy    -9.75e+21
       Myz     4.35e+21
       Mzz     1.79e+21
                                                     
                                                     
                                                     
                                                     
                     #############-                  
                 ###############-------              
              #################-----------           
             ##################------------          
           ###################---------------        
          ###################-----------------       
         ###################-------------------      
        ----------------####--------------------     
        -------------------###------------------     
       -------------------#########--------------    
       -------------------############-----------    
       ------------------################--------    
       ------------------##################------    
        ----------------#####################---     
        -   ------------#######################-     
          P -----------########################      
            -----------#######################       
           ------------###########   ########        
             ---------############ T ######          
              --------############   #####           
                 -----#################              
                     -#############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.79e+21  -3.85e+21  -4.35e+21 
 -3.85e+21   7.96e+21   1.19e+22 
 -4.35e+21   1.19e+22  -9.75e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110218081335/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 290
      DIP = 70
     RAKE = 10
       MW = 4.07
       HS = 8.0

The NDK file is 20110218081335.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2011/02/18 08:13:35:0  35.27  -92.38   6.3 4.3 Arkansas
 
 Stations used:
   AG.CCAR AG.FCAR AG.HHAR AG.LCAR AG.WHAR AG.WLAR IU.WVT 
   NM.MGMO NM.MPH NM.OLIL NM.SIUC NM.SLM NM.UALR NM.USIN 
   NM.X102 NM.X201 TA.139A TA.140A TA.141A TA.236A TA.O34A 
   TA.O36A TA.O38A TA.O39A TA.O40A TA.P33A TA.P34A TA.P35A 
   TA.P36A TA.P38A TA.P39A TA.P40A TA.Q33A TA.Q34A TA.Q35A 
   TA.Q36A TA.Q37A TA.Q38A TA.Q39A TA.R32A TA.R33A TA.R34A 
   TA.R35A TA.R36A TA.R37A TA.R38A TA.R39A TA.R40A TA.S32A 
   TA.S33A TA.S34A TA.S35A TA.S36A TA.S37A TA.S38A TA.S39A 
   TA.S40A TA.T32A TA.T33A TA.T34A TA.T35A TA.T36A TA.T37A 
   TA.T38A TA.T39A TA.T40A TA.TUL1 TA.U31A TA.U32A TA.U33A 
   TA.U34A TA.U35A TA.U36A TA.U37A TA.U38A TA.U39A TA.U40A 
   TA.V32A TA.V33A TA.V34A TA.V35A TA.V36A TA.V37A TA.V38A 
   TA.V39A TA.W33A TA.W34A TA.W35A TA.W36A TA.W37B TA.W38A 
   TA.W39A TA.W40A TA.WHTX TA.X33A TA.X36A TA.X37A TA.X38A 
   TA.X40A TA.Y36A TA.Y37A TA.Y38A TA.Y39A TA.Y40A TA.Z37A 
   TA.Z38A TA.Z39A TA.Z40A US.KSU1 US.LRAL US.MIAR US.OXF 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 1.60e+22 dyne-cm
  Mw = 4.07 
  Z  = 8 km
  Plane   Strike  Dip  Rake
   NP1      197    81   160
   NP2      290    70    10
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.60e+22     21     152
    N   0.00e+00     68     353
    P  -1.60e+22      7     245

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     7.96e+21
       Mxy    -1.19e+22
       Mxz    -3.85e+21
       Myy    -9.75e+21
       Myz     4.35e+21
       Mzz     1.79e+21
                                                     
                                                     
                                                     
                                                     
                     #############-                  
                 ###############-------              
              #################-----------           
             ##################------------          
           ###################---------------        
          ###################-----------------       
         ###################-------------------      
        ----------------####--------------------     
        -------------------###------------------     
       -------------------#########--------------    
       -------------------############-----------    
       ------------------################--------    
       ------------------##################------    
        ----------------#####################---     
        -   ------------#######################-     
          P -----------########################      
            -----------#######################       
           ------------###########   ########        
             ---------############ T ######          
              --------############   #####           
                 -----#################              
                     -#############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.79e+21  -3.85e+21  -4.35e+21 
 -3.85e+21   7.96e+21   1.19e+22 
 -4.35e+21   1.19e+22  -9.75e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110218081335/index.html
	

Magnitudes

mLg Magnitude


(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
br c 0.12 0.25 n 4 p 2
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   110    85   -25   3.94 0.4731
WVFGRD96    1.0   110    85   -15   3.95 0.5072
WVFGRD96    2.0   290    90    10   3.99 0.5532
WVFGRD96    3.0   290    90     5   4.01 0.5684
WVFGRD96    4.0   290    90    10   4.03 0.5699
WVFGRD96    5.0   290    80    10   4.04 0.5674
WVFGRD96    6.0   295    70    15   4.06 0.5691
WVFGRD96    7.0   290    70    10   4.07 0.5704
WVFGRD96    8.0   290    70    10   4.07 0.5712
WVFGRD96    9.0   290    75    10   4.08 0.5705
WVFGRD96   10.0   290    70    10   4.09 0.5701
WVFGRD96   11.0   290    70    10   4.10 0.5675
WVFGRD96   12.0   290    75    10   4.11 0.5643
WVFGRD96   13.0   290    75    10   4.11 0.5608
WVFGRD96   14.0   290    75    10   4.12 0.5563
WVFGRD96   15.0   290    75    10   4.13 0.5513
WVFGRD96   16.0   290    75    10   4.14 0.5460
WVFGRD96   17.0   290    75    10   4.14 0.5398
WVFGRD96   18.0   290    75    10   4.15 0.5326
WVFGRD96   19.0   290    75    10   4.16 0.5249
WVFGRD96   20.0   290    75    10   4.17 0.5160
WVFGRD96   21.0   290    75    10   4.17 0.5076
WVFGRD96   22.0   290    75    10   4.18 0.4989
WVFGRD96   23.0   290    75    10   4.19 0.4899
WVFGRD96   24.0   290    75    10   4.19 0.4808
WVFGRD96   25.0   290    75    10   4.20 0.4715
WVFGRD96   26.0   290    75    10   4.20 0.4620
WVFGRD96   27.0   290    75    10   4.21 0.4521
WVFGRD96   28.0   290    75    10   4.21 0.4421
WVFGRD96   29.0   290    70    10   4.22 0.4325

The best solution is

WVFGRD96    8.0   290    70    10   4.07 0.5712

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
br c 0.12 0.25 n 4 p 2
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The CUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
CUS Model with Q from simple gamma values
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
  H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC)   QP   QS  ETAP  ETAS  FREFP  FREFS
  1.0000  5.0000  2.8900  2.5000 0.172E-02 0.387E-02 0.00  0.00  1.00  1.00 
  9.0000  6.1000  3.5200  2.7300 0.160E-02 0.363E-02 0.00  0.00  1.00  1.00 
 10.0000  6.4000  3.7000  2.8200 0.149E-02 0.336E-02 0.00  0.00  1.00  1.00 
 20.0000  6.7000  3.8700  2.9020 0.000E-04 0.000E-04 0.00  0.00  1.00  1.00 
  0.0000  8.1500  4.7000  3.3640 0.194E-02 0.431E-02 0.00  0.00  1.00  1.00 

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Sun Dec 6 19:06:56 CST 2015