Location

2010/07/30 11:13:46 38.615 -118.215 9 4.20 Nevada

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2010/07/30 11:13:46:0  38.62 -118.21   9.0 4.2 Nevada
 
 Stations used:
   BK.CMB BK.WDC BK.YBH CI.GSC CI.ISA CI.LDF CI.OSI CI.PASC 
   LB.DAC LB.TPH US.DUG US.ELK US.TPNV US.WVOR UU.BGU UU.CCUT 
   UU.MTPU UU.PSUT UU.TCRU UW.TREE 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 6.10e+21 dyne-cm
  Mw = 3.79 
  Z  = 14 km
  Plane   Strike  Dip  Rake
   NP1       70    85    15
   NP2      339    75   175
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.10e+21     14     295
    N   0.00e+00     74      88
    P  -6.10e+21      7     203

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -4.01e+21
       Mxy    -4.41e+21
       Mxz     1.28e+21
       Myy     3.74e+21
       Myz    -1.01e+21
       Mzz     2.74e+20
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 #####-----------------              
              ##########------------------           
             ############------------------          
           ###############-------------------        
             ##############-------------------       
         # T ###############-------------------      
        ##   ################-----------------##     
        ######################-------------#####     
       ########################--------##########    
       #########################--###############    
       ######################---#################    
       #################---------################    
        ##########----------------##############     
        ###-----------------------##############     
         --------------------------############      
          -------------------------###########       
           ------------------------##########        
             -----------------------#######          
              -----   --------------######           
                 -- P --------------###              
                      -------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.74e+20   1.28e+21   1.01e+21 
  1.28e+21  -4.01e+21   4.41e+21 
  1.01e+21   4.41e+21   3.74e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20100730111346/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 70
      DIP = 85
     RAKE = 15
       MW = 3.79
       HS = 14.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
UNR
 USGS/SLU Moment Tensor Solution
 ENS  2010/07/30 11:13:46:0  38.62 -118.21   9.0 4.2 Nevada
 
 Stations used:
   BK.CMB BK.WDC BK.YBH CI.GSC CI.ISA CI.LDF CI.OSI CI.PASC 
   LB.DAC LB.TPH US.DUG US.ELK US.TPNV US.WVOR UU.BGU UU.CCUT 
   UU.MTPU UU.PSUT UU.TCRU UW.TREE 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 6.10e+21 dyne-cm
  Mw = 3.79 
  Z  = 14 km
  Plane   Strike  Dip  Rake
   NP1       70    85    15
   NP2      339    75   175
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.10e+21     14     295
    N   0.00e+00     74      88
    P  -6.10e+21      7     203

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -4.01e+21
       Mxy    -4.41e+21
       Mxz     1.28e+21
       Myy     3.74e+21
       Myz    -1.01e+21
       Mzz     2.74e+20
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 #####-----------------              
              ##########------------------           
             ############------------------          
           ###############-------------------        
             ##############-------------------       
         # T ###############-------------------      
        ##   ################-----------------##     
        ######################-------------#####     
       ########################--------##########    
       #########################--###############    
       ######################---#################    
       #################---------################    
        ##########----------------##############     
        ###-----------------------##############     
         --------------------------############      
          -------------------------###########       
           ------------------------##########        
             -----------------------#######          
              -----   --------------######           
                 -- P --------------###              
                      -------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.74e+20   1.28e+21   1.01e+21 
  1.28e+21  -4.01e+21   4.41e+21 
  1.01e+21   4.41e+21   3.74e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20100730111346/index.html
	
Seismic Moment Tensor Solution

2010/07/30 (211) 11:13:47.00 38.6149 -118.2151 746209
	Depth =  10.0 (km)
	Mw    =  3.80
	Mo    =  6.34x10^21 (dyne x cm)

	Percent Double Couple =  97 %
	Percent CLVD          =   3 %
	no ISO calculated
	Epsilon=0.02
	 Percent Variance Reduction =  46.36 %
	 Total Fit                  =  11.11 
	Major Double Couple
		            strike dip   rake
		Nodal Plane 1: 340  71  164
		Nodal Plane 2:  75  75   19

	DEVIATORIC MOMENT TENSOR

	Moment Tensor Elements: Spherical Coordinates
		Mrr=  1.13 Mtt= -3.86 Mff=  2.74
		Mrt=  1.34 Mrf=  1.91 Mtf=  4.79 EXP=21


	Moment Tensor Elements: Cartesian Coordinates
		-3.86 -4.79  1.34
		-4.79  2.74 -1.91
		 1.34 -1.91  1.13

	Eigenvalues:
		T-axis eigenvalue=  6.29
		N-axis eigenvalue=  0.10
		P-axis eigenvalue= -6.39

	Eigenvalues and eigenvectors of the Major Double Couple:
		T-axis ev= 6.29 trend=298 plunge=24
		N-axis ev= 0.00 trend=112 plunge=66
		P-axis ev=-6.29 trend=207 plunge=2

	Maximum Azmuithal Gap=176 Distance to Nearest Station=105.1 (km)

	Number of Stations (D=Displacement/V=Velocity) Used=6 (defining only)
		
	 TPH.LB.D MLAC.CI.D TIN.CI.D GRA.CI.D
	 BMN.LB.D R11A.TA.D


              ##---------------                             
          ########-----------------                         
        ############-----------------                       
      ###############------------------                     
     #################------------------                    
     ##################------------------                   
   T ###################-------------------                 
     ####################------------------                 
 #########################------------------                
 ##########################--------------###                
 ##########################-----------#######               
 ###########################-------##########               
 ############################-###############               
 ############################################               
 ########################---################                
 -###############------------###############                
  ---------------------------##############                 
   ---------------------------#############                 
   ---------------------------############                  
     -------------------------###########                   
      ------------------------#########                     
        -   ------------------#######                       
          P ------------------#####                         
              ---------------###                            
                                                            


All Stations defining and nondefining: 
Station.Net 	Def 	Distance 	Azi    	Bazi  	lo-f 	hi-f vmodel
            	    	(km)     	(deg)  	(deg) 	(Hz) 	(Hz)    
TPH.LB (D) 	Y 	   105.1  	124  	305  	0.020 	0.080 TPH.LB.wus.glib
MLAC.CI (D) 	Y 	   122.3  	207  	 26  	0.020 	0.080 MLAC.CI.wus.glib
TIN.CI (D) 	Y 	   173.9  	180  	  0  	0.020 	0.080 TIN.CI.wus.glib
GRA.CI (D) 	Y 	   194.2  	157  	338  	0.020 	0.080 GRA.CI.wus.glib
BMN.LB (D) 	Y 	   219.0  	 23  	203  	0.020 	0.080 BMN.LB.wus.glib
R11A.TA (D) 	Y 	   230.2  	 97  	278  	0.020 	0.080 R11A.TA.wus.glib

 (V)-velocity (D)-Displacement

Author: ken
Date: 2010/07/30 12:32:06

mtinv Version 2.1_DEVEL OCT2008
        

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.06 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5    75    65    20   3.45 0.3758
WVFGRD96    1.0    70    75    10   3.44 0.4006
WVFGRD96    2.0    75    65    20   3.56 0.4897
WVFGRD96    3.0    70    75    10   3.57 0.5313
WVFGRD96    4.0    70    80    10   3.59 0.5596
WVFGRD96    5.0    70    75    20   3.63 0.5866
WVFGRD96    6.0    70    80    20   3.65 0.6148
WVFGRD96    7.0    70    80    15   3.67 0.6422
WVFGRD96    8.0    70    80    20   3.71 0.6693
WVFGRD96    9.0    70    85    20   3.72 0.6896
WVFGRD96   10.0   250    90   -20   3.74 0.7052
WVFGRD96   11.0   250    90   -20   3.75 0.7181
WVFGRD96   12.0    70    85    15   3.76 0.7278
WVFGRD96   13.0   250    90   -15   3.78 0.7314
WVFGRD96   14.0    70    85    15   3.79 0.7350
WVFGRD96   15.0   250    85   -15   3.80 0.7334
WVFGRD96   16.0    70    85    10   3.81 0.7321
WVFGRD96   17.0    70    85    10   3.81 0.7274
WVFGRD96   18.0    70    85    10   3.82 0.7205
WVFGRD96   19.0    70    85    10   3.83 0.7119
WVFGRD96   20.0    70    85    10   3.84 0.7021
WVFGRD96   21.0   250    90   -10   3.85 0.6902
WVFGRD96   22.0    70    85     5   3.86 0.6790
WVFGRD96   23.0   250    90   -10   3.86 0.6650
WVFGRD96   24.0    70    85     5   3.87 0.6533
WVFGRD96   25.0   250    90    -5   3.88 0.6372
WVFGRD96   26.0    70    85     5   3.88 0.6247
WVFGRD96   27.0    70    85     5   3.89 0.6097
WVFGRD96   28.0   250    90    -5   3.90 0.5919
WVFGRD96   29.0   250    90    -5   3.90 0.5762

The best solution is

WVFGRD96   14.0    70    85    15   3.79 0.7350

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.06 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Fri Jul 30 11:18:49 CDT 2010

Last Changed 2010/07/30