Location

2010/01/15 15:27:02 35.569 -97.277 5.0 3.80 Oklahoma

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2010/01/15 15:27:02:0  35.57  -97.28   5.0 3.8 Oklahoma
 
 Stations used:
   TA.133A TA.134A TA.135A TA.Q30A TA.Q31A TA.Q32A TA.Q33A 
   TA.R30A TA.R31A TA.R32A TA.R33A TA.S30A TA.T30A TA.T31A 
   TA.T32A TA.T33A TA.TUL1 TA.U29A TA.U30A TA.U31A TA.U32A 
   TA.U33A TA.U34A TA.V30A TA.V33A TA.V34A TA.W32A TA.WHTX 
   TA.X29A TA.X32A TA.X33A TA.X34A TA.Y33A TA.Y34A US.AMTX 
   US.KSU1 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 4.03e+21 dyne-cm
  Mw = 3.67 
  Z  = 8 km
  Plane   Strike  Dip  Rake
   NP1      135    85    30
   NP2       42    60   174
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.03e+21     24       3
    N   0.00e+00     60     144
    P  -4.03e+21     17     265

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.30e+21
       Mxy    -1.75e+20
       Mxz     1.62e+21
       Myy    -3.65e+21
       Myz     1.19e+21
       Mzz     3.50e+20
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ##########   #########              
              ############# T ############           
             -#############   ############-          
           ----###########################---        
          -------#########################----       
         ---------#######################------      
        ------------#####################-------     
        --------------##################--------     
       ----------------################----------    
       --   -------------#############-----------    
       -- P ---------------##########------------    
       --   -----------------#######-------------    
        -----------------------###--------------     
        ------------------------#---------------     
         ---------------------#####------------      
          ------------------#########---------       
           --------------##############------        
             ---------####################-          
              ############################           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  3.50e+20   1.62e+21  -1.19e+21 
  1.62e+21   3.30e+21   1.75e+20 
 -1.19e+21   1.75e+20  -3.65e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20100115152702/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 135
      DIP = 85
     RAKE = 30
       MW = 3.67
       HS = 8.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2010/01/15 15:27:02:0  35.57  -97.28   5.0 3.8 Oklahoma
 
 Stations used:
   TA.133A TA.134A TA.135A TA.Q30A TA.Q31A TA.Q32A TA.Q33A 
   TA.R30A TA.R31A TA.R32A TA.R33A TA.S30A TA.T30A TA.T31A 
   TA.T32A TA.T33A TA.TUL1 TA.U29A TA.U30A TA.U31A TA.U32A 
   TA.U33A TA.U34A TA.V30A TA.V33A TA.V34A TA.W32A TA.WHTX 
   TA.X29A TA.X32A TA.X33A TA.X34A TA.Y33A TA.Y34A US.AMTX 
   US.KSU1 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 4.03e+21 dyne-cm
  Mw = 3.67 
  Z  = 8 km
  Plane   Strike  Dip  Rake
   NP1      135    85    30
   NP2       42    60   174
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.03e+21     24       3
    N   0.00e+00     60     144
    P  -4.03e+21     17     265

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.30e+21
       Mxy    -1.75e+20
       Mxz     1.62e+21
       Myy    -3.65e+21
       Myz     1.19e+21
       Mzz     3.50e+20
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ##########   #########              
              ############# T ############           
             -#############   ############-          
           ----###########################---        
          -------#########################----       
         ---------#######################------      
        ------------#####################-------     
        --------------##################--------     
       ----------------################----------    
       --   -------------#############-----------    
       -- P ---------------##########------------    
       --   -----------------#######-------------    
        -----------------------###--------------     
        ------------------------#---------------     
         ---------------------#####------------      
          ------------------#########---------       
           --------------##############------        
             ---------####################-          
              ############################           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  3.50e+20   1.62e+21  -1.19e+21 
  1.62e+21   3.30e+21   1.75e+20 
 -1.19e+21   1.75e+20  -3.65e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20100115152702/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
br c 0.12 0.25 n 4 p 2
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   310    75   -20   3.22 0.2374
WVFGRD96    1.0   130    90     5   3.26 0.2679
WVFGRD96    2.0   135    90     0   3.43 0.4474
WVFGRD96    3.0   135    85    -5   3.50 0.5114
WVFGRD96    4.0   135    80   -10   3.54 0.5414
WVFGRD96    5.0   135    75   -10   3.57 0.5542
WVFGRD96    6.0   135    85    30   3.62 0.5658
WVFGRD96    7.0   135    85    25   3.63 0.5732
WVFGRD96    8.0   135    85    30   3.67 0.5765
WVFGRD96    9.0   320    80    35   3.68 0.5743
WVFGRD96   10.0   320    80    30   3.69 0.5753
WVFGRD96   11.0   320    80    30   3.70 0.5739
WVFGRD96   12.0   320    80    25   3.71 0.5703
WVFGRD96   13.0   320    80    25   3.72 0.5657
WVFGRD96   14.0   320    85    25   3.73 0.5598
WVFGRD96   15.0   320    85    20   3.74 0.5532
WVFGRD96   16.0   320    85    20   3.75 0.5465
WVFGRD96   17.0   320    85    20   3.76 0.5390
WVFGRD96   18.0   320    85    20   3.77 0.5307
WVFGRD96   19.0   320    85    20   3.77 0.5215
WVFGRD96   20.0   320    85    15   3.78 0.5134
WVFGRD96   21.0   320    85    15   3.79 0.5046
WVFGRD96   22.0   140    75    15   3.80 0.4944
WVFGRD96   23.0   140    75    15   3.81 0.4853
WVFGRD96   24.0   320    85    15   3.81 0.4758
WVFGRD96   25.0   320    85    15   3.81 0.4661
WVFGRD96   26.0   320    85    15   3.82 0.4556
WVFGRD96   27.0   320    85    15   3.82 0.4454
WVFGRD96   28.0   320    85    10   3.83 0.4361
WVFGRD96   29.0   320    85    10   3.83 0.4270

The best solution is

WVFGRD96    8.0   135    85    30   3.67 0.5765

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
br c 0.12 0.25 n 4 p 2
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Fri Jan 15 11:48:48 CST 2010

Last Changed 2010/01/15