2009/09/23 13:03:15 34.476 -107.900 6.0 3.30 New Mexico
The program elocate was used with the WUS model to locate this event. The details are given in the file
WUS.txt (The velocity model file is VEL.MOD and the phase arrival file with station coordinates is elocate.dat. We used the azimiths and take-off angles for thiis earthquake to plot the P-wve first-motion focal mechanism, using the preferred mechanism form the waveform inversion, which is plotted below for comparison.
2009/09/23 13:03:15 34.465 -107.830 5.0 3.3 NEW MEXICO
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2009/09/23 13:03:14:0 34.48 -107.90 6.0 3.3 New Mexico Stations used: IU.ANMO TA.125A TA.S22A TA.U23A TA.V20A TA.V21A TA.W18A TA.W20A TA.W21A TA.W22A TA.X20A TA.X22A TA.Y20A TA.Y21A TA.Y22A TA.Y22D TA.Y23A TA.Y24A TA.Y25A TA.Y26A TA.Z20A TA.Z21A TA.Z22A TA.Z24A Filtering commands used: hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 1.82e+21 dyne-cm Mw = 3.44 Z = 5 km Plane Strike Dip Rake NP1 5 60 -65 NP2 142 38 -126 Principal Axes: Axis Value Plunge Azimuth T 1.82e+21 12 77 N 0.00e+00 21 172 P -1.82e+21 65 321 Moment Tensor: (dyne-cm) Component Value Mxx -1.05e+20 Mxy 5.32e+20 Mxz -4.55e+20 Myy 1.53e+21 Myz 7.88e+20 Mzz -1.43e+21 ----------#### ---------------####### #------------------######### #--------------------######### ##----------------------########## ###----------------------########### ####----------------------############ #####---------- ----------######### #####---------- P ----------######### T ######---------- ----------######### # ######-----------------------############# #######----------------------############# ########--------------------############## ########-------------------############# #########------------------############# #########----------------############# ##########-------------############# ###########-----------############ ############-------########### ##############---########### ############---------- #######------- Global CMT Convention Moment Tensor: R T P -1.43e+21 -4.55e+20 -7.88e+20 -4.55e+20 -1.05e+20 -5.32e+20 -7.88e+20 -5.32e+20 1.53e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090923130314/index.html |
STK = 5 DIP = 60 RAKE = -65 MW = 3.44 HS = 5.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2009/09/23 13:03:14:0 34.48 -107.90 6.0 3.3 New Mexico Stations used: IU.ANMO TA.125A TA.S22A TA.U23A TA.V20A TA.V21A TA.W18A TA.W20A TA.W21A TA.W22A TA.X20A TA.X22A TA.Y20A TA.Y21A TA.Y22A TA.Y22D TA.Y23A TA.Y24A TA.Y25A TA.Y26A TA.Z20A TA.Z21A TA.Z22A TA.Z24A Filtering commands used: hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 1.82e+21 dyne-cm Mw = 3.44 Z = 5 km Plane Strike Dip Rake NP1 5 60 -65 NP2 142 38 -126 Principal Axes: Axis Value Plunge Azimuth T 1.82e+21 12 77 N 0.00e+00 21 172 P -1.82e+21 65 321 Moment Tensor: (dyne-cm) Component Value Mxx -1.05e+20 Mxy 5.32e+20 Mxz -4.55e+20 Myy 1.53e+21 Myz 7.88e+20 Mzz -1.43e+21 ----------#### ---------------####### #------------------######### #--------------------######### ##----------------------########## ###----------------------########### ####----------------------############ #####---------- ----------######### #####---------- P ----------######### T ######---------- ----------######### # ######-----------------------############# #######----------------------############# ########--------------------############## ########-------------------############# #########------------------############# #########----------------############# ##########-------------############# ###########-----------############ ############-------########### ##############---########### ############---------- #######------- Global CMT Convention Moment Tensor: R T P -1.43e+21 -4.55e+20 -7.88e+20 -4.55e+20 -1.05e+20 -5.32e+20 -7.88e+20 -5.32e+20 1.53e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090923130314/index.html |
Plot of First Motions and Nodal Planes of Final Solution |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.05 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 15 55 -40 3.19 0.3164 WVFGRD96 1.0 15 55 -45 3.22 0.3256 WVFGRD96 2.0 15 60 -45 3.31 0.3955 WVFGRD96 3.0 10 60 -55 3.38 0.4325 WVFGRD96 4.0 10 65 -60 3.42 0.4607 WVFGRD96 5.0 5 60 -65 3.44 0.4750 WVFGRD96 6.0 5 55 -60 3.44 0.4719 WVFGRD96 7.0 5 55 -60 3.45 0.4552 WVFGRD96 8.0 0 55 -70 3.50 0.4699 WVFGRD96 9.0 10 60 -55 3.47 0.4380 WVFGRD96 10.0 20 70 -40 3.43 0.4094 WVFGRD96 11.0 25 75 -35 3.42 0.3941 WVFGRD96 12.0 210 90 25 3.41 0.3821 WVFGRD96 13.0 210 85 25 3.42 0.3741 WVFGRD96 14.0 210 80 25 3.42 0.3661 WVFGRD96 15.0 210 80 25 3.43 0.3590 WVFGRD96 16.0 210 75 20 3.43 0.3525 WVFGRD96 17.0 210 75 20 3.44 0.3477 WVFGRD96 18.0 210 75 20 3.44 0.3426 WVFGRD96 19.0 210 75 20 3.45 0.3378 WVFGRD96 20.0 210 80 20 3.45 0.3338 WVFGRD96 21.0 210 80 20 3.45 0.3294 WVFGRD96 22.0 210 80 15 3.46 0.3262 WVFGRD96 23.0 210 80 15 3.47 0.3229 WVFGRD96 24.0 210 80 15 3.47 0.3196 WVFGRD96 25.0 210 80 15 3.48 0.3163 WVFGRD96 26.0 210 80 15 3.48 0.3132 WVFGRD96 27.0 210 80 15 3.49 0.3101 WVFGRD96 28.0 210 80 15 3.49 0.3068 WVFGRD96 29.0 210 80 15 3.50 0.3035
The best solution is
WVFGRD96 5.0 5 60 -65 3.44 0.4750
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.05 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Wed Sep 23 13:23:11 CDT 2009