Location SLU

2009/09/14 18:27:23 36.5506 -106.4719 8.5 4.00 New Mexico

The program elocate was used with the WUS model to locate this event. The details are given int he file WUS.txt (The velocity model file is VEL.MOD and the phase arrival file with station coordinates is elocate.dat. We used the azimiths and take-off angles for thiis earthquake to plot the P-wve first-motion focal mechanism, using the preferred mechanism form the waveform inversion, which is plotted below for comparison.

Location NEIC

2009/09/14 18:27:23 36.551 -106.371 5.0 3.2 New Mexico

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2009/09/14 18:27:23:0  36.55 -106.47   8.5 4.0 New Mexico
 
 Stations used:
   TA.Q21A TA.Q22A TA.R20A TA.R21A TA.R22A TA.S21A TA.S22A 
   TA.S24A TA.S25A TA.S26A TA.T21A TA.T22A TA.T23A TA.T24B 
   TA.T25A TA.T26A TA.U21A TA.U22A TA.U23A TA.U24A TA.V21A 
   TA.V23A TA.V24A TA.W24A 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 1.88e+21 dyne-cm
  Mw = 3.45 
  Z  = 12 km
  Plane   Strike  Dip  Rake
   NP1      345    73   -148
   NP2      245    60   -20
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.88e+21      8     113
    N   0.00e+00     54      11
    P  -1.88e+21     34     209

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -7.16e+20
       Mxy    -1.20e+21
       Mxz     6.66e+20
       Myy     1.27e+21
       Myz     6.66e+20
       Mzz    -5.58e+20
                                                     
                                                     
                                                     
                                                     
                     ##------------                  
                 ########--------------              
              ############----------------           
             ##############----------------          
           #################-----------------        
          ###################--------####-----       
         ###################--#################      
        ################-------#################     
        #############----------#################     
       ###########--------------#################    
       #########----------------#################    
       #######-------------------################    
       #####---------------------################    
        ###----------------------###############     
        ##------------------------##########   #     
         -------------------------########## T       
          ----------   -----------##########         
           --------- P -----------###########        
             -------   -----------#########          
              --------------------########           
                 -----------------#####              
                     ------------##                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -5.58e+20   6.66e+20  -6.66e+20 
  6.66e+20  -7.16e+20   1.20e+21 
 -6.66e+20   1.20e+21   1.27e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090914182723/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 245
      DIP = 60
     RAKE = -20
       MW = 3.45
       HS = 12.0

Both the CUS and WUS models give similar fits. We use the WUS model since that model was used for the locaiton.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
SLUFM
 USGS/SLU Moment Tensor Solution
 ENS  2009/09/14 18:27:23:0  36.55 -106.47   8.5 4.0 New Mexico
 
 Stations used:
   TA.Q21A TA.Q22A TA.R20A TA.R21A TA.R22A TA.S21A TA.S22A 
   TA.S24A TA.S25A TA.S26A TA.T21A TA.T22A TA.T23A TA.T24B 
   TA.T25A TA.T26A TA.U21A TA.U22A TA.U23A TA.U24A TA.V21A 
   TA.V23A TA.V24A TA.W24A 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 1.88e+21 dyne-cm
  Mw = 3.45 
  Z  = 12 km
  Plane   Strike  Dip  Rake
   NP1      345    73   -148
   NP2      245    60   -20
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.88e+21      8     113
    N   0.00e+00     54      11
    P  -1.88e+21     34     209

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -7.16e+20
       Mxy    -1.20e+21
       Mxz     6.66e+20
       Myy     1.27e+21
       Myz     6.66e+20
       Mzz    -5.58e+20
                                                     
                                                     
                                                     
                                                     
                     ##------------                  
                 ########--------------              
              ############----------------           
             ##############----------------          
           #################-----------------        
          ###################--------####-----       
         ###################--#################      
        ################-------#################     
        #############----------#################     
       ###########--------------#################    
       #########----------------#################    
       #######-------------------################    
       #####---------------------################    
        ###----------------------###############     
        ##------------------------##########   #     
         -------------------------########## T       
          ----------   -----------##########         
           --------- P -----------###########        
             -------   -----------#########          
              --------------------########           
                 -----------------#####              
                     ------------##                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -5.58e+20   6.66e+20  -6.66e+20 
  6.66e+20  -7.16e+20   1.20e+21 
 -6.66e+20   1.20e+21   1.27e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090914182723/index.html
	
Plot of First Motions and Nodal Planes of Final Solution

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
br c 0.12 0.25 n 4 p 2
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   195    45  -100   3.04 0.1931
WVFGRD96    1.0    75    85     0   2.99 0.2229
WVFGRD96    2.0    75    85     5   3.18 0.3749
WVFGRD96    3.0    75    80    10   3.24 0.4240
WVFGRD96    4.0    75    65    10   3.29 0.4522
WVFGRD96    5.0   250    60   -15   3.33 0.4744
WVFGRD96    6.0   250    60   -15   3.36 0.5014
WVFGRD96    7.0   250    60   -15   3.38 0.5190
WVFGRD96    8.0   245    50   -25   3.43 0.5312
WVFGRD96    9.0   245    55   -25   3.44 0.5409
WVFGRD96   10.0   245    55   -20   3.44 0.5448
WVFGRD96   11.0   245    60   -20   3.44 0.5467
WVFGRD96   12.0   245    60   -20   3.45 0.5469
WVFGRD96   13.0   250    65   -10   3.46 0.5457
WVFGRD96   14.0   245    65   -15   3.46 0.5437
WVFGRD96   15.0   245    65   -15   3.47 0.5412
WVFGRD96   16.0   245    65   -15   3.48 0.5378
WVFGRD96   17.0   245    65   -15   3.49 0.5335
WVFGRD96   18.0   245    65   -15   3.50 0.5285
WVFGRD96   19.0   245    65   -15   3.51 0.5226
WVFGRD96   20.0   245    65   -15   3.52 0.5164
WVFGRD96   21.0   245    65   -15   3.53 0.5097
WVFGRD96   22.0   245    65   -15   3.54 0.5019
WVFGRD96   23.0   245    65   -15   3.55 0.4936
WVFGRD96   24.0   245    65   -15   3.55 0.4852
WVFGRD96   25.0   245    70   -15   3.56 0.4772
WVFGRD96   26.0   245    70   -15   3.56 0.4696
WVFGRD96   27.0   245    70   -15   3.57 0.4617
WVFGRD96   28.0   245    70   -15   3.58 0.4543
WVFGRD96   29.0   245    70   -15   3.58 0.4470

The best solution is

WVFGRD96   12.0   245    60   -20   3.45 0.5469

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
br c 0.12 0.25 n 4 p 2
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Tue Sep 15 14:58:21 CDT 2009

Last Changed 2009/09/14