2009/09/14 18:27:23 36.5506 -106.4719 8.5 4.00 New Mexico
The program elocate was used with the WUS model to locate this event. The details are given int he file WUS.txt (The velocity model file is VEL.MOD and the phase arrival file with station coordinates is elocate.dat. We used the azimiths and take-off angles for thiis earthquake to plot the P-wve first-motion focal mechanism, using the preferred mechanism form the waveform inversion, which is plotted below for comparison.
2009/09/14 18:27:23 36.551 -106.371 5.0 3.2 New Mexico
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2009/09/14 18:27:23:0 36.55 -106.47 8.5 4.0 New Mexico Stations used: TA.Q21A TA.Q22A TA.R20A TA.R21A TA.R22A TA.S21A TA.S22A TA.S24A TA.S25A TA.S26A TA.T21A TA.T22A TA.T23A TA.T24B TA.T25A TA.T26A TA.U21A TA.U22A TA.U23A TA.U24A TA.V21A TA.V23A TA.V24A TA.W24A Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 1.88e+21 dyne-cm Mw = 3.45 Z = 12 km Plane Strike Dip Rake NP1 345 73 -148 NP2 245 60 -20 Principal Axes: Axis Value Plunge Azimuth T 1.88e+21 8 113 N 0.00e+00 54 11 P -1.88e+21 34 209 Moment Tensor: (dyne-cm) Component Value Mxx -7.16e+20 Mxy -1.20e+21 Mxz 6.66e+20 Myy 1.27e+21 Myz 6.66e+20 Mzz -5.58e+20 ##------------ ########-------------- ############---------------- ##############---------------- #################----------------- ###################--------####----- ###################--################# ################-------################# #############----------################# ###########--------------################# #########----------------################# #######-------------------################ #####---------------------################ ###----------------------############### ##------------------------########## # -------------------------########## T ---------- -----------########## --------- P -----------########### ------- -----------######### --------------------######## -----------------##### ------------## Global CMT Convention Moment Tensor: R T P -5.58e+20 6.66e+20 -6.66e+20 6.66e+20 -7.16e+20 1.20e+21 -6.66e+20 1.20e+21 1.27e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090914182723/index.html |
STK = 245 DIP = 60 RAKE = -20 MW = 3.45 HS = 12.0
Both the CUS and WUS models give similar fits. We use the WUS model since that model was used for the locaiton.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2009/09/14 18:27:23:0 36.55 -106.47 8.5 4.0 New Mexico Stations used: TA.Q21A TA.Q22A TA.R20A TA.R21A TA.R22A TA.S21A TA.S22A TA.S24A TA.S25A TA.S26A TA.T21A TA.T22A TA.T23A TA.T24B TA.T25A TA.T26A TA.U21A TA.U22A TA.U23A TA.U24A TA.V21A TA.V23A TA.V24A TA.W24A Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 1.88e+21 dyne-cm Mw = 3.45 Z = 12 km Plane Strike Dip Rake NP1 345 73 -148 NP2 245 60 -20 Principal Axes: Axis Value Plunge Azimuth T 1.88e+21 8 113 N 0.00e+00 54 11 P -1.88e+21 34 209 Moment Tensor: (dyne-cm) Component Value Mxx -7.16e+20 Mxy -1.20e+21 Mxz 6.66e+20 Myy 1.27e+21 Myz 6.66e+20 Mzz -5.58e+20 ##------------ ########-------------- ############---------------- ##############---------------- #################----------------- ###################--------####----- ###################--################# ################-------################# #############----------################# ###########--------------################# #########----------------################# #######-------------------################ #####---------------------################ ###----------------------############### ##------------------------########## # -------------------------########## T ---------- -----------########## --------- P -----------########### ------- -----------######### --------------------######## -----------------##### ------------## Global CMT Convention Moment Tensor: R T P -5.58e+20 6.66e+20 -6.66e+20 6.66e+20 -7.16e+20 1.20e+21 -6.66e+20 1.20e+21 1.27e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090914182723/index.html |
Plot of First Motions and Nodal Planes of Final Solution |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 195 45 -100 3.04 0.1931 WVFGRD96 1.0 75 85 0 2.99 0.2229 WVFGRD96 2.0 75 85 5 3.18 0.3749 WVFGRD96 3.0 75 80 10 3.24 0.4240 WVFGRD96 4.0 75 65 10 3.29 0.4522 WVFGRD96 5.0 250 60 -15 3.33 0.4744 WVFGRD96 6.0 250 60 -15 3.36 0.5014 WVFGRD96 7.0 250 60 -15 3.38 0.5190 WVFGRD96 8.0 245 50 -25 3.43 0.5312 WVFGRD96 9.0 245 55 -25 3.44 0.5409 WVFGRD96 10.0 245 55 -20 3.44 0.5448 WVFGRD96 11.0 245 60 -20 3.44 0.5467 WVFGRD96 12.0 245 60 -20 3.45 0.5469 WVFGRD96 13.0 250 65 -10 3.46 0.5457 WVFGRD96 14.0 245 65 -15 3.46 0.5437 WVFGRD96 15.0 245 65 -15 3.47 0.5412 WVFGRD96 16.0 245 65 -15 3.48 0.5378 WVFGRD96 17.0 245 65 -15 3.49 0.5335 WVFGRD96 18.0 245 65 -15 3.50 0.5285 WVFGRD96 19.0 245 65 -15 3.51 0.5226 WVFGRD96 20.0 245 65 -15 3.52 0.5164 WVFGRD96 21.0 245 65 -15 3.53 0.5097 WVFGRD96 22.0 245 65 -15 3.54 0.5019 WVFGRD96 23.0 245 65 -15 3.55 0.4936 WVFGRD96 24.0 245 65 -15 3.55 0.4852 WVFGRD96 25.0 245 70 -15 3.56 0.4772 WVFGRD96 26.0 245 70 -15 3.56 0.4696 WVFGRD96 27.0 245 70 -15 3.57 0.4617 WVFGRD96 28.0 245 70 -15 3.58 0.4543 WVFGRD96 29.0 245 70 -15 3.58 0.4470
The best solution is
WVFGRD96 12.0 245 60 -20 3.45 0.5469
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Tue Sep 15 14:58:21 CDT 2009