2009/08/19 18:19:27 61.21 -150.81 58.0 5.00 Alaska
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2009/08/19 18:19:27:0 61.21 -150.81 58.0 5.0 Alaska Stations used: AK.BMR AK.CAST AK.CHUM AK.DIV AK.EYAK AK.MCK AK.PPLA AK.SAW AK.SSN AK.TRF AT.PMR AT.SVW2 IU.COLA Filtering commands used: hp c 0.015 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 3.02e+23 dyne-cm Mw = 4.92 Z = 69 km Plane Strike Dip Rake NP1 332 80 113 NP2 85 25 25 Principal Axes: Axis Value Plunge Azimuth T 3.02e+23 50 268 N 0.00e+00 23 148 P -3.02e+23 31 43 Moment Tensor: (dyne-cm) Component Value Mxx -1.17e+23 Mxy -1.05e+23 Mxz -1.03e+23 Myy 1.93e+22 Myz -2.40e+23 Mzz 9.78e+22 -------------- ##-------------------- #######--------------------- #########--------------------- #############------------ ------ ###############----------- P ------- #################---------- -------- ###################--------------------- ####################-------------------- ######################-------------------- ######### ###########------------------- ######### T ############-----------------# -######## #############---------------## #########################--------------# --########################-----------### --########################---------### ---######################-------#### ----#####################----##### -----######################### ------------###--------##### ---------------------# -------------- Global CMT Convention Moment Tensor: R T P 9.78e+22 -1.03e+23 2.40e+23 -1.03e+23 -1.17e+23 1.05e+23 2.40e+23 1.05e+23 1.93e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090819181927/index.html |
STK = 85 DIP = 25 RAKE = 25 MW = 4.92 HS = 69.0
The waveform inversion is preferred. The AEIC Mw is slightly larger, which is related to differences in the velocity model. Out WUS model probably has slightly smaller velocities at this source depth than the AEIC model. When we can this using the 0.02 - 0.10 Hz band one nodal plane was vertical and essentially striking NS. Upon using the 0.015 - 0.05 Hz band, this nodal plane strikes a bit west of north. The plane dipping slightly to the south is not in the direction for shallow subduction in this region.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2009/08/19 18:19:27:0 61.21 -150.81 58.0 5.0 Alaska Stations used: AK.BMR AK.CAST AK.CHUM AK.DIV AK.EYAK AK.MCK AK.PPLA AK.SAW AK.SSN AK.TRF AT.PMR AT.SVW2 IU.COLA Filtering commands used: hp c 0.015 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 3.02e+23 dyne-cm Mw = 4.92 Z = 69 km Plane Strike Dip Rake NP1 332 80 113 NP2 85 25 25 Principal Axes: Axis Value Plunge Azimuth T 3.02e+23 50 268 N 0.00e+00 23 148 P -3.02e+23 31 43 Moment Tensor: (dyne-cm) Component Value Mxx -1.17e+23 Mxy -1.05e+23 Mxz -1.03e+23 Myy 1.93e+22 Myz -2.40e+23 Mzz 9.78e+22 -------------- ##-------------------- #######--------------------- #########--------------------- #############------------ ------ ###############----------- P ------- #################---------- -------- ###################--------------------- ####################-------------------- ######################-------------------- ######### ###########------------------- ######### T ############-----------------# -######## #############---------------## #########################--------------# --########################-----------### --########################---------### ---######################-------#### ----#####################----##### -----######################### ------------###--------##### ---------------------# -------------- Global CMT Convention Moment Tensor: R T P 9.78e+22 -1.03e+23 2.40e+23 -1.03e+23 -1.17e+23 1.05e+23 2.40e+23 1.05e+23 1.93e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090819181927/index.html |
Moment tensor inversion summary for event 2009/08/19 18:19 Date: 2009/08/19 Time: 18:19 (UTC) Region: Cook Inlet Region of Alaska Mw=5.1 Location: Lat. 61.2286; Lon. -150.8254; Depth 70 km (Best-fitting depth from moment tensor inversion) Solution quality: good; Number of stations = 7 Best Double Couple: strike dip rake Plane 1: 174.0 87.0 -104.0 Plane 2: 72.3 14.3 -12.1 Moment Tensor Parameters: Mo = 4.23092e+23 dyn-cm Mxx = -0.19; Mxy = -0.96; Mxz = -0.48 Myy = 0.62; Myz = -4.05; Mzz = -0.43 Principal Axes: value azimuth plunge T: 4.22 277.03 40.44 N: 0.01 174.77 14.00 P: -4.23 69.71 46.19 |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.015 n 3 lp c 0.05 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 0 45 -85 4.20 0.2219 WVFGRD96 2.0 0 45 -90 4.29 0.2695 WVFGRD96 3.0 0 40 -85 4.35 0.2709 WVFGRD96 4.0 10 40 -70 4.37 0.2474 WVFGRD96 5.0 35 70 0 4.34 0.2416 WVFGRD96 6.0 35 70 5 4.37 0.2458 WVFGRD96 7.0 40 70 15 4.38 0.2520 WVFGRD96 8.0 40 65 15 4.41 0.2555 WVFGRD96 9.0 40 65 15 4.43 0.2620 WVFGRD96 10.0 40 65 15 4.44 0.2668 WVFGRD96 11.0 40 65 15 4.45 0.2725 WVFGRD96 12.0 40 65 15 4.45 0.2786 WVFGRD96 13.0 40 65 20 4.47 0.2864 WVFGRD96 14.0 45 60 20 4.46 0.2956 WVFGRD96 15.0 45 60 20 4.46 0.3055 WVFGRD96 16.0 45 60 20 4.47 0.3159 WVFGRD96 17.0 45 60 20 4.48 0.3268 WVFGRD96 18.0 45 55 15 4.48 0.3383 WVFGRD96 19.0 45 55 15 4.49 0.3503 WVFGRD96 20.0 45 55 15 4.50 0.3626 WVFGRD96 21.0 45 50 10 4.50 0.3733 WVFGRD96 22.0 50 45 10 4.50 0.3869 WVFGRD96 23.0 50 45 10 4.51 0.4011 WVFGRD96 24.0 50 45 10 4.52 0.4149 WVFGRD96 25.0 50 40 5 4.52 0.4294 WVFGRD96 26.0 55 35 5 4.53 0.4445 WVFGRD96 27.0 55 35 5 4.54 0.4599 WVFGRD96 28.0 55 35 5 4.55 0.4749 WVFGRD96 29.0 55 35 5 4.56 0.4896 WVFGRD96 30.0 55 35 5 4.57 0.5038 WVFGRD96 31.0 55 35 5 4.58 0.5176 WVFGRD96 32.0 55 35 5 4.59 0.5306 WVFGRD96 33.0 60 35 5 4.60 0.5430 WVFGRD96 34.0 60 35 5 4.60 0.5546 WVFGRD96 35.0 60 35 5 4.61 0.5653 WVFGRD96 36.0 60 35 5 4.62 0.5748 WVFGRD96 37.0 60 40 10 4.63 0.5832 WVFGRD96 38.0 60 40 10 4.63 0.5918 WVFGRD96 39.0 60 40 10 4.64 0.5991 WVFGRD96 40.0 65 25 10 4.75 0.5999 WVFGRD96 41.0 65 25 10 4.76 0.6109 WVFGRD96 42.0 65 25 10 4.77 0.6211 WVFGRD96 43.0 65 25 10 4.78 0.6307 WVFGRD96 44.0 65 30 10 4.79 0.6400 WVFGRD96 45.0 65 30 10 4.79 0.6490 WVFGRD96 46.0 65 30 10 4.80 0.6574 WVFGRD96 47.0 65 30 10 4.81 0.6652 WVFGRD96 48.0 65 30 10 4.81 0.6726 WVFGRD96 49.0 65 30 10 4.82 0.6794 WVFGRD96 50.0 70 25 15 4.82 0.6860 WVFGRD96 51.0 70 25 15 4.83 0.6920 WVFGRD96 52.0 70 25 15 4.83 0.6978 WVFGRD96 53.0 75 25 15 4.84 0.7036 WVFGRD96 54.0 75 25 15 4.85 0.7093 WVFGRD96 55.0 75 25 15 4.86 0.7144 WVFGRD96 56.0 75 25 15 4.86 0.7190 WVFGRD96 57.0 75 25 15 4.87 0.7229 WVFGRD96 58.0 80 25 20 4.87 0.7264 WVFGRD96 59.0 80 25 20 4.88 0.7306 WVFGRD96 60.0 80 25 20 4.88 0.7339 WVFGRD96 61.0 80 25 20 4.89 0.7365 WVFGRD96 62.0 80 25 20 4.89 0.7384 WVFGRD96 63.0 80 25 20 4.90 0.7405 WVFGRD96 64.0 80 25 20 4.90 0.7424 WVFGRD96 65.0 80 25 20 4.90 0.7435 WVFGRD96 66.0 85 25 25 4.91 0.7443 WVFGRD96 67.0 85 25 25 4.91 0.7452 WVFGRD96 68.0 85 25 25 4.92 0.7452 WVFGRD96 69.0 85 25 25 4.92 0.7452 WVFGRD96 70.0 85 25 25 4.92 0.7444 WVFGRD96 71.0 85 25 25 4.93 0.7435 WVFGRD96 72.0 90 25 25 4.93 0.7423 WVFGRD96 73.0 90 25 25 4.94 0.7407 WVFGRD96 74.0 90 25 25 4.94 0.7390 WVFGRD96 75.0 90 25 25 4.94 0.7372 WVFGRD96 76.0 90 25 25 4.95 0.7344 WVFGRD96 77.0 90 25 25 4.95 0.7317 WVFGRD96 78.0 90 25 25 4.95 0.7291 WVFGRD96 79.0 90 25 25 4.96 0.7252 WVFGRD96 80.0 90 25 25 4.96 0.7221 WVFGRD96 81.0 90 25 25 4.96 0.7185 WVFGRD96 82.0 90 25 25 4.96 0.7143 WVFGRD96 83.0 95 25 30 4.96 0.7104 WVFGRD96 84.0 95 25 30 4.97 0.7063 WVFGRD96 85.0 95 25 30 4.97 0.7014 WVFGRD96 86.0 95 25 30 4.97 0.6973 WVFGRD96 87.0 95 25 30 4.97 0.6928 WVFGRD96 88.0 100 25 30 4.98 0.6876 WVFGRD96 89.0 100 25 30 4.98 0.6835 WVFGRD96 90.0 100 25 30 4.98 0.6781 WVFGRD96 91.0 100 25 30 4.98 0.6738 WVFGRD96 92.0 100 25 30 4.99 0.6687 WVFGRD96 93.0 100 25 30 4.99 0.6639 WVFGRD96 94.0 100 25 30 4.99 0.6587 WVFGRD96 95.0 100 25 30 4.99 0.6536 WVFGRD96 96.0 100 25 30 4.99 0.6483 WVFGRD96 97.0 100 25 30 4.99 0.6434 WVFGRD96 98.0 100 25 30 5.00 0.6381 WVFGRD96 99.0 100 25 30 5.00 0.6332
The best solution is
WVFGRD96 69.0 85 25 25 4.92 0.7452
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.015 n 3 lp c 0.05 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Wed Aug 19 14:10:13 MDT 2009