2009/08/18 02:50:16 40.62 -107.64 10.0 4.40 Colorado
After an initial inversion run, large time shifts were required. We picked arrivals form the permanent and the TA network for use with the elocate programs and the CUS model. The SLU location isabout 0.1 degree west of the initial NEIC location. I prefer the SLU location because the waveform time shifts are no longer as large as -4 seconds at short distances.
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2009/08/18 02:50:16:7 40.62 -107.64 10.0 4.4 Colorado Stations used: IW.SMCO TA.L19A TA.L21A TA.L22A TA.L23A TA.M19A TA.M20A TA.M21A TA.M22A TA.M23A TA.M24A TA.N20A TA.N22A TA.N23A TA.N24A TA.N25A TA.O19A TA.O20A TA.O22A TA.O23A TA.O24A TA.O25A TA.P19A TA.P20A TA.P21A TA.P22A TA.P23A TA.P24A TA.P25A TA.Q21A TA.Q22A TA.Q23A TA.R21A TA.R22A TA.R23A US.ISCO Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 4.32e+21 dyne-cm Mw = 3.69 Z = 18 km Plane Strike Dip Rake NP1 247 74 -143 NP2 145 55 -20 Principal Axes: Axis Value Plunge Azimuth T 4.32e+21 12 12 N 0.00e+00 50 267 P -4.32e+21 37 111 Moment Tensor: (dyne-cm) Component Value Mxx 3.58e+21 Mxy 1.79e+21 Mxz 1.62e+21 Myy -2.19e+21 Myz -1.75e+21 Mzz -1.39e+21 ######### ## ############# T ###### --############## ######### --############################ ----############################## -----############################### ------################################ --------##################-------------- --------############-------------------- ----------#######------------------------- ----------###----------------------------- ----------#------------------------------- --------####-------------------- ------- ----########------------------- P ------ --############----------------- ------ ##############------------------------ ###############--------------------- ################------------------ #################------------- ####################-------- ###################### ############## Global CMT Convention Moment Tensor: R T P -1.39e+21 1.62e+21 1.75e+21 1.62e+21 3.58e+21 -1.79e+21 1.75e+21 -1.79e+21 -2.19e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090818025016/index.html |
STK = 145 DIP = 55 RAKE = -20 MW = 3.69 HS = 18.0
The location is the SLU location and not that of initial NEIC. The difference is a shift of about 7 km to the SW. All waveform inversion solutions, e.g., using CUS or WUS models, using the 0.02 - 0.10 or 0.02 - 0.06 Hz gave a depth near 16 km and about the same moment magnitude, the same orientations of the P and T axes. However the 0.02 - 0.10 Hz band gave an almost pure thrust event while the 0.02 - 0.06 Hz band gave an oblique solution. Because the location straddles two velocity regions, we use the lower frequency band and the WUS model, which gives a slightly better fit.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2009/08/18 02:50:16:7 40.62 -107.64 10.0 4.4 Colorado Stations used: IW.SMCO TA.L19A TA.L21A TA.L22A TA.L23A TA.M19A TA.M20A TA.M21A TA.M22A TA.M23A TA.M24A TA.N20A TA.N22A TA.N23A TA.N24A TA.N25A TA.O19A TA.O20A TA.O22A TA.O23A TA.O24A TA.O25A TA.P19A TA.P20A TA.P21A TA.P22A TA.P23A TA.P24A TA.P25A TA.Q21A TA.Q22A TA.Q23A TA.R21A TA.R22A TA.R23A US.ISCO Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 4.32e+21 dyne-cm Mw = 3.69 Z = 18 km Plane Strike Dip Rake NP1 247 74 -143 NP2 145 55 -20 Principal Axes: Axis Value Plunge Azimuth T 4.32e+21 12 12 N 0.00e+00 50 267 P -4.32e+21 37 111 Moment Tensor: (dyne-cm) Component Value Mxx 3.58e+21 Mxy 1.79e+21 Mxz 1.62e+21 Myy -2.19e+21 Myz -1.75e+21 Mzz -1.39e+21 ######### ## ############# T ###### --############## ######### --############################ ----############################## -----############################### ------################################ --------##################-------------- --------############-------------------- ----------#######------------------------- ----------###----------------------------- ----------#------------------------------- --------####-------------------- ------- ----########------------------- P ------ --############----------------- ------ ##############------------------------ ###############--------------------- ################------------------ #################------------- ####################-------- ###################### ############## Global CMT Convention Moment Tensor: R T P -1.39e+21 1.62e+21 1.75e+21 1.62e+21 3.58e+21 -1.79e+21 1.75e+21 -1.79e+21 -2.19e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090818025016/index.html |
First motion plot using elocate take-off angles and azimuths |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 25 45 -90 3.27 0.2292 WVFGRD96 1.0 205 45 -85 3.31 0.2160 WVFGRD96 2.0 20 45 -90 3.40 0.2528 WVFGRD96 3.0 155 60 25 3.41 0.2514 WVFGRD96 4.0 150 50 10 3.46 0.2605 WVFGRD96 5.0 140 35 -15 3.51 0.2882 WVFGRD96 6.0 140 40 -15 3.52 0.3233 WVFGRD96 7.0 135 40 -25 3.54 0.3555 WVFGRD96 8.0 135 35 -25 3.60 0.3783 WVFGRD96 9.0 135 40 -30 3.62 0.4073 WVFGRD96 10.0 135 45 -35 3.63 0.4330 WVFGRD96 11.0 135 45 -35 3.64 0.4534 WVFGRD96 12.0 140 50 -30 3.64 0.4700 WVFGRD96 13.0 140 50 -30 3.65 0.4821 WVFGRD96 14.0 140 50 -25 3.66 0.4911 WVFGRD96 15.0 140 55 -25 3.67 0.4969 WVFGRD96 16.0 140 55 -25 3.68 0.5013 WVFGRD96 17.0 145 55 -20 3.68 0.5035 WVFGRD96 18.0 145 55 -20 3.69 0.5039 WVFGRD96 19.0 145 55 -20 3.69 0.5024 WVFGRD96 20.0 145 60 -20 3.70 0.4998 WVFGRD96 21.0 145 55 -20 3.71 0.4951 WVFGRD96 22.0 145 55 -15 3.72 0.4902 WVFGRD96 23.0 145 55 -15 3.72 0.4843 WVFGRD96 24.0 145 60 -15 3.73 0.4773 WVFGRD96 25.0 145 60 -15 3.74 0.4699 WVFGRD96 26.0 145 55 -10 3.74 0.4619 WVFGRD96 27.0 145 60 -15 3.75 0.4538 WVFGRD96 28.0 145 60 -15 3.76 0.4452 WVFGRD96 29.0 150 55 10 3.76 0.4357
The best solution is
WVFGRD96 18.0 145 55 -20 3.69 0.5039
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Tue Aug 18 12:15:45 CDT 2009