Location

2009/07/03 11:00:19 25.465 -109.638 10.0 6.0

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2009/07/03 11:00:19:0  25.47 -109.64  10.0 6.0 
 
 Best Fitting Double Couple
  Mo = 6.10e+24 dyne-cm
  Mw = 5.79 
  Z  = 7 km
  Plane   Strike  Dip  Rake
   NP1      135    81   150
   NP2      230    60    10
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.10e+24     27      88
    N   0.00e+00     59     301
    P  -6.10e+24     14     186

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -5.66e+24
       Mxy    -4.51e+23
       Mxz     1.52e+24
       Myy     4.74e+24
       Myz     2.64e+24
       Mzz     9.17e+23
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             #-----------------------------          
           ####-------------------###########        
          ######-------------#################       
         #########--------#####################      
        ###########-----########################     
        #############-##########################     
       #############--####################   ####    
       ###########------################## T ####    
       ##########---------################   ####    
       #########------------#####################    
        #######---------------##################     
        ######------------------################     
         ####---------------------#############      
          ##------------------------##########       
           #---------------------------######        
             ----------------------------##          
              -----------   --------------           
                 -------- P -----------              
                     ----   -------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  9.17e+23   1.52e+24  -2.64e+24 
  1.52e+24  -5.66e+24   4.51e+23 
 -2.64e+24   4.51e+23   4.74e+24 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090703110019/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 230
      DIP = 60
     RAKE = 10
       MW = 5.79
       HS = 7.0

Since the purpose of studying this event was to get more dispersion data and since the event is not on land, the surface wave solution is used. The orientation of the Pressure and tension axes is the same as the published moment tensor soltuions.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
USGSMT
GCMT
USGSCMT
 USGS/SLU Moment Tensor Solution
 ENS  2009/07/03 11:00:19:0  25.47 -109.64  10.0 6.0 
 
 Best Fitting Double Couple
  Mo = 6.10e+24 dyne-cm
  Mw = 5.79 
  Z  = 7 km
  Plane   Strike  Dip  Rake
   NP1      135    81   150
   NP2      230    60    10
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.10e+24     27      88
    N   0.00e+00     59     301
    P  -6.10e+24     14     186

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -5.66e+24
       Mxy    -4.51e+23
       Mxz     1.52e+24
       Myy     4.74e+24
       Myz     2.64e+24
       Mzz     9.17e+23
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             #-----------------------------          
           ####-------------------###########        
          ######-------------#################       
         #########--------#####################      
        ###########-----########################     
        #############-##########################     
       #############--####################   ####    
       ###########------################## T ####    
       ##########---------################   ####    
       #########------------#####################    
        #######---------------##################     
        ######------------------################     
         ####---------------------#############      
          ##------------------------##########       
           #---------------------------######        
             ----------------------------##          
              -----------   --------------           
                 -------- P -----------              
                     ----   -------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  9.17e+23   1.52e+24  -2.64e+24 
  1.52e+24  -5.66e+24   4.51e+23 
 -2.64e+24   4.51e+23   4.74e+24 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090703110019/index.html
	
USGS Body-Wave Moment Tensor Solution

 09/07/03 11:00:19.24
 GULF OF CALIFORNIA              
 Epicenter:  25.525 -109.675
 MW 5.8

 USGS MOMENT TENSOR SOLUTION
 Depth  18         No. of sta: 27
 Moment Tensor;   Scale 10**17 Nm
   Mrr=-0.50       Mtt=-5.81
   Mpp= 6.32       Mrt= 0.14
   Mrp=-1.80       Mtp=-0.10
  Principal axes:
   T  Val=  6.77  Plg=13  Azm= 89
   N       -0.95      76      275
   P       -5.81       1      179

 Best Double Couple:Mo=6.3*10**17
  NP1:Strike=225 Dip=79 Slip=   9
  NP2:       134     81       169
                                      
               -------                
          -----------------           
        ---------------------         
      #----------------------##       
    ####------------------#######     
   ######---------------##########    
   ########-----------############    
  ###########------################   
  ############---##############   #   
  ############################# T #   
  ############----#############   #   
  ##########--------###############   
   ########-----------############    
   ######---------------##########    
    ####-------------------######     
      #-----------------------#       
        ---------------------         
          -------   -------           
               -- P --                
                                      


        
July 3, 2009, GULF OF CALIFORNIA, MW=5.9

Goran Ekstrom

CENTROID-MOMENT-TENSOR  SOLUTION
GCMT EVENT:     C200907031100A
DATA: II IU CU IC G  GE
L.P.BODY WAVES: 87S, 173C, T= 40
MANTLE WAVES:   72S,  90C, T=125
SURFACE WAVES:  94S, 203C, T= 50
TIMESTAMP:      Q-20090703191714
CENTROID LOCATION:
ORIGIN TIME:      11:00:17.6 0.1
LAT:25.24N 0.01;LON:109.85W 0.01
DEP: 14.3  0.6;TRIANG HDUR:  2.2
MOMENT TENSOR: SCALE 10**25 D-CM
RR=-0.021 0.006; TT=-0.864 0.008
PP= 0.885 0.008; RT= 0.011 0.014
RP= 0.068 0.014; TP= 0.033 0.006
PRINCIPAL AXES:
1.(T) VAL=  0.891;PLG= 4;AZM=271
2.(N)      -0.026;    86;     82
3.(P)      -0.865;     1;    181
BEST DBLE.COUPLE:M0= 8.78*10**24
NP1: STRIKE=316;DIP=87;SLIP= 177
NP2: STRIKE= 46;DIP=87;SLIP=   3

           -----------
       -------------------
     -----------------------
   ####--------------------###
  #######----------------######
 ##########-------------########
 ############---------##########
  #############-----#############
 T ###############-###############
  ##############--###############
 ##############------#############
 ###########----------##########
 #########-------------#########
  ######-----------------######
   ###---------------------###
     -----------------------
       --------   --------
           ---- P ----
        
USGS Centroid Moment Tensor Solution

 09/07/03 11:00:19.24
 GULF OF CALIFORNIA              
 Epicenter:  25.525 -109.675
 MW 6.0

 USGS CENTROID MOMENT TENSOR
 09/07/03 11:00:39.50
 Centroid:   25.709 -109.492
 Depth  10         No. of sta:148
 Moment Tensor;   Scale 10**17 Nm
   Mrr=-0.46       Mtt=-7.30
   Mpp= 7.76       Mrt= 7.62
   Mrp=-7.07       Mtp= 0.76
  Principal axes:
   T  Val= 12.41  Plg=33  Azm= 77
   N        0.86      36      318
   P      -13.27      35      196

 Best Double Couple:Mo=1.3*10**18
  NP1:Strike=225 Dip=36 Slip=  -1
  NP2:       317     89      -125
                                      
               -------                
          -----------------           
        ---------------------         
      ##---------##############       
    ######----###################     
   ###############################    
   #######----####################    
  #######------############   #####   
  ######---------########## T #####   
  #####------------########   #####   
  ####---------------##############   
  ####----------------#############   
   ###------------------##########    
   ###--------   ---------########    
    ##-------- P ----------######     
      --------   ------------##       
        ---------------------         
          -----------------           
               -------                
                                      


        

Surface-Wave Focal Mechanism

The following figure shows the stations used in the grid search for the best focal mechanism to fit the surface-wave spectral amplitudes of the Love and Rayleigh waves.
Location of broadband stations used to obtain focal mechanism from surface-wave spectral amplitudes

The surface-wave determined focal mechanism is shown here.


  NODAL PLANES 

  
  STK=     134.95
  DIP=      81.35
 RAKE=     149.62
  
             OR
  
  STK=     229.98
  DIP=      60.01
 RAKE=      10.00
 
 
DEPTH = 7.0 km
 
Mw = 5.79
Best Fit 0.8914 - P-T axis plot gives solutions with FIT greater than FIT90

First motion data

The P-wave first motion data for focal mechanism studies are as follow:

Sta Az    Dist   First motion

Surface-wave analysis

Surface wave analysis was performed using codes from Computer Programs in Seismology, specifically the multiple filter analysis program do_mft and the surface-wave radiation pattern search program srfgrd96.

Data preparation

Digital data were collected, instrument response removed and traces converted to Z, R an T components. Multiple filter analysis was applied to the Z and T traces to obtain the Rayleigh- and Love-wave spectral amplitudes, respectively. These were input to the search program which examined all depths between 1 and 25 km and all possible mechanisms.
Best mechanism fit as a function of depth. The preferred depth is given above. Lower hemisphere projection

Pressure-tension axis trends. Since the surface-wave spectra search does not distinguish between P and T axes and since there is a 180 ambiguity in strike, all possible P and T axes are plotted. First motion data and waveforms will be used to select the preferred mechanism. The purpose of this plot is to provide an idea of the possible range of solutions. The P and T-axes for all mechanisms with goodness of fit greater than 0.9 FITMAX (above) are plotted here.


Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the Love and Rayleigh wave radiation patterns. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. Because of the symmetry of the spectral amplitude rediation patterns, only strikes from 0-180 degrees are sampled.

Love-wave radiation patterns

Rayleigh-wave radiation patterns

Broadband station distribution

The distribution of broadband stations with azimuth and distance is
Listing of broadband stations used

Waveform comparison for this mechanism

Since the analysis of the surface-wave radiation patterns uses only spectral amplitudes and because the surfave-wave radiation patterns have a 180 degree symmetry, each surface-wave solution consists of four possible focal mechanisms corresponding to the interchange of the P- and T-axes and a roation of the mechanism by 180 degrees. To select one mechanism, P-wave first motion can be used. This was not possible in this case because all the P-wave first motions were emergent ( a feature of the P-wave wave takeoff angle, the station location and the mechanism). The other way to select among the mechanisms is to compute forward synthetics and compare the observed and predicted waveforms.

The fits to the waveforms with the given mechanism are show below:

This figure shows the fit to the three components of motion (Z - vertical, R-radial and T - transverse). For each station and component, the observed traces is shown in red and the model predicted trace in blue. The traces represent filtered ground velocity in units of meters/sec (the peak value is printed adjacent to each trace; each pair of traces to plotted to the same scale to emphasize the difference in levels). Both synthetic and observed traces have been filtered using the SAC commands:

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Appendix A


Spectra fit plots to each station

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Thu Jul 9 09:16:25 CDT 2009

Last Changed 2009/07/03