2009/06/07 23:24:39 58.9670 -136.7190 37.0 5.00 Alaska
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2009/06/07 23:24:39:0 58.97 -136.72 37.0 5.0 Alaska Stations used: AK.BESE AK.DIV AK.EYAK AK.PNL AT.CRAG AT.MID AT.SKAG CN.DAWY CN.DLBC CN.FNBB CN.MOBC CN.RUBB CN.WHY US.WRAK Filtering commands used: hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 1.68e+23 dyne-cm Mw = 4.75 Z = 15 km Plane Strike Dip Rake NP1 32 57 130 NP2 155 50 45 Principal Axes: Axis Value Plunge Azimuth T 1.68e+23 57 359 N 0.00e+00 33 188 P -1.68e+23 4 95 Moment Tensor: (dyne-cm) Component Value Mxx 4.88e+22 Mxy 1.37e+22 Mxz 7.79e+22 Myy -1.66e+23 Myz -1.36e+22 Mzz 1.17e+23 ############## -##################### ----######################-- ----#######################--- -----########################----- ------########## ###########------ -------########## T ###########------- --------########## ###########-------- --------#######################--------- ----------######################---------- ----------#####################----------- -----------###################--------- -----------##################---------- P -----------################----------- ------------##############-------------- ------------###########--------------- -------------########--------------- -------------#####---------------- ------------------------------ ---------#####-------------- ###############------- ############## Global CMT Convention Moment Tensor: R T P 1.17e+23 7.79e+22 1.36e+22 7.79e+22 4.88e+22 -1.37e+22 1.36e+22 -1.37e+22 -1.66e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090607232439/index.html |
STK = 155 DIP = 50 RAKE = 45 MW = 4.75 HS = 15.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2009/06/07 23:24:39:0 58.97 -136.72 37.0 5.0 Alaska Stations used: AK.BESE AK.DIV AK.EYAK AK.PNL AT.CRAG AT.MID AT.SKAG CN.DAWY CN.DLBC CN.FNBB CN.MOBC CN.RUBB CN.WHY US.WRAK Filtering commands used: hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 1.68e+23 dyne-cm Mw = 4.75 Z = 15 km Plane Strike Dip Rake NP1 32 57 130 NP2 155 50 45 Principal Axes: Axis Value Plunge Azimuth T 1.68e+23 57 359 N 0.00e+00 33 188 P -1.68e+23 4 95 Moment Tensor: (dyne-cm) Component Value Mxx 4.88e+22 Mxy 1.37e+22 Mxz 7.79e+22 Myy -1.66e+23 Myz -1.36e+22 Mzz 1.17e+23 ############## -##################### ----######################-- ----#######################--- -----########################----- ------########## ###########------ -------########## T ###########------- --------########## ###########-------- --------#######################--------- ----------######################---------- ----------#####################----------- -----------###################--------- -----------##################---------- P -----------################----------- ------------##############-------------- ------------###########--------------- -------------########--------------- -------------#####---------------- ------------------------------ ---------#####-------------- ###############------- ############## Global CMT Convention Moment Tensor: R T P 1.17e+23 7.79e+22 1.36e+22 7.79e+22 4.88e+22 -1.37e+22 1.36e+22 -1.37e+22 -1.66e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090607232439/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.05 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 270 45 -85 4.45 0.3224 WVFGRD96 1.0 170 90 5 4.38 0.3136 WVFGRD96 2.0 330 70 -30 4.48 0.3710 WVFGRD96 3.0 155 90 45 4.55 0.3942 WVFGRD96 4.0 320 80 -50 4.59 0.4340 WVFGRD96 5.0 320 80 -50 4.60 0.4676 WVFGRD96 6.0 320 80 -45 4.60 0.4917 WVFGRD96 7.0 320 80 -40 4.61 0.5108 WVFGRD96 8.0 320 80 -45 4.65 0.5250 WVFGRD96 9.0 315 75 -45 4.66 0.5342 WVFGRD96 10.0 160 45 50 4.73 0.5619 WVFGRD96 11.0 165 45 55 4.74 0.6043 WVFGRD96 12.0 165 45 55 4.75 0.6334 WVFGRD96 13.0 165 45 55 4.76 0.6493 WVFGRD96 14.0 165 45 55 4.76 0.6577 WVFGRD96 15.0 155 50 45 4.75 0.6593 WVFGRD96 16.0 155 50 45 4.75 0.6585 WVFGRD96 17.0 155 50 45 4.75 0.6529 WVFGRD96 18.0 155 50 40 4.76 0.6467 WVFGRD96 19.0 150 55 35 4.76 0.6403 WVFGRD96 20.0 150 55 35 4.76 0.6321 WVFGRD96 21.0 150 55 35 4.77 0.6256 WVFGRD96 22.0 150 55 30 4.77 0.6166 WVFGRD96 23.0 150 55 30 4.78 0.6062 WVFGRD96 24.0 150 55 30 4.78 0.5961 WVFGRD96 25.0 145 60 25 4.78 0.5851 WVFGRD96 26.0 320 75 25 4.79 0.5733 WVFGRD96 27.0 320 75 25 4.79 0.5667 WVFGRD96 28.0 320 75 25 4.80 0.5599 WVFGRD96 29.0 320 75 25 4.81 0.5525 WVFGRD96 30.0 320 75 25 4.81 0.5445 WVFGRD96 31.0 320 75 25 4.82 0.5363 WVFGRD96 32.0 150 75 -15 4.82 0.5271 WVFGRD96 33.0 150 75 -15 4.83 0.5197 WVFGRD96 34.0 150 75 -15 4.84 0.5128 WVFGRD96 35.0 150 75 -15 4.84 0.5056 WVFGRD96 36.0 150 80 -15 4.85 0.4980 WVFGRD96 37.0 150 80 -15 4.86 0.4908 WVFGRD96 38.0 150 80 -15 4.87 0.4834 WVFGRD96 39.0 150 80 -15 4.88 0.4752 WVFGRD96 40.0 115 50 -50 4.98 0.4886 WVFGRD96 41.0 115 55 -50 4.98 0.4832 WVFGRD96 42.0 115 55 -50 4.98 0.4777 WVFGRD96 43.0 115 55 -50 4.99 0.4724 WVFGRD96 44.0 115 55 -50 4.99 0.4669 WVFGRD96 45.0 115 55 -50 5.00 0.4613 WVFGRD96 46.0 115 55 -50 5.01 0.4557 WVFGRD96 47.0 155 70 25 4.98 0.4519 WVFGRD96 48.0 155 70 25 4.99 0.4491 WVFGRD96 49.0 155 70 25 4.99 0.4458
The best solution is
WVFGRD96 15.0 155 50 45 4.75 0.6593
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.05 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Sun Jun 7 21:10:29 CDT 2009