Location

EARTHQUAKES CANADA SOLUTION

    Date    Time(UT)   Lat     Long  Depth    Mag   Region and Comment
    ----    --------   ---     ----  -----    ---   ------------------
2009/05/28  13:57:32  66.30  -135.11  20.0g  4.3ML 130 km SSW of Fort McPherson
http://earthquakescanada.nrcan.gc.ca/stnsdata/nedb/bull_e.php?solid=20090528.1357001

NEIC LOCATION

This supercedes the AIEC location given next. The NEIC location is similar to the SLU Elocate solution. The SLU Elocate solution is used for this event.
4.0 2009/05/28 13:57:30 66.250 -135.050 10.0 NORTHERN YUKON TERRITORY, CANADA

AEIC Location

2009 05 28 13 57 23 66.33 -135.55 16.2 4.3 Yukon 2009/05/28 13:57:30 66.32 -135.16 10.0 4.30 Yukon, Canada

SLU LOCATION USING ELOCATE (Preferred)

This was located using the following arrival time picks:

STA   IWT       ARRIVAL TIME   PhIDQL PHASE  FM CHAN
COLA    2 20090528135851.852    1 0 e P        X  Z
DAWY    2 20090528135816.470    1 0 e P        +  Z
EGAK    0 20090528135816.867    1 0 i P        C  Z
EGAK    2 20090528135851.225    2 0 e S        X  Z
EGAK    2 20090528135906.237    3 0 e Lg       X  Z
INK     2 20090528135806.514    1 0 e P        +  Z
INK     2 20090528135837.233    3 0 e Lg       X  Z
WHY     2 20090528135854.807    1 0 e P        X  Z

Error Ellipse  X=   2.1578 km  Y= 4.4881 km  Theta =  29.2849 deg

 RMS Error        :               0.346              sec
 Travel_Time_Table:          CUS
 Latitude         :             66.3176 +-    0.0259 N         2.8916 km
 Longitude        :           -135.1603 +-    0.0923 E         4.0543 km
 Depth            :               10.00 +-      5.78 km
 Epoch Time       :      1243519050.815 +-      0.59 sec
 Event Time       :  20090528135730.815 +-      0.59 sec
 HYPO71 Quality   :                  DD
 Gap              :                 161              deg

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2009/05/28 13:57:30:0  66.32 -135.16  10.0 4.3 Yukon, Canada
 
 Stations used:
   CN.DAWY CN.INK CN.WHY IU.COLA US.EGAK 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 8.04e+21 dyne-cm
  Mw = 3.87 
  Z  = 12 km
  Plane   Strike  Dip  Rake
   NP1      226    62   112
   NP2        5    35    55
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   8.04e+21     66     175
    N   0.00e+00     19      35
    P  -8.04e+21     14     300

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -5.06e+20
       Mxy     3.14e+21
       Mxz    -3.96e+21
       Myy    -5.68e+21
       Myz     1.91e+21
       Mzz     6.19e+21
                                                     
                                                     
                                                     
                                                     
                     -----------###                  
                 ------------------####              
              ----------------------######           
             ------------------------#-----          
           ----------------------######------        
          -   ---------------###########------       
         -- P -------------#############-------      
        ---   -----------################-------     
        ---------------##################-------     
       --------------#####################-------    
       ------------#######################-------    
       -----------########################-------    
       ----------########################--------    
        --------###########   ###########-------     
        -------############ T ##########--------     
         -----#############   ##########-------      
          ----#########################-------       
           --#########################-------        
             ########################------          
              #####################-------           
                 ################------              
                     #########-----                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  6.19e+21  -3.96e+21  -1.91e+21 
 -3.96e+21  -5.06e+20  -3.14e+21 
 -1.91e+21  -3.14e+21  -5.68e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090528135730/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 5
      DIP = 35
     RAKE = 55
       MW = 3.87
       HS = 12.0

The waveform inversion is preferred. The depth and moment magnitude are constrained. I am note sure about the mechanism. The time shifts required to fit the synthetics indicates that the event should be west of its location, e.g., to make it close to INK, EGAK and COLA without changing the distance to DAWY. In addition having a NNE striking normal fault differs from previous solutions. So beware

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2009/05/28 13:57:30:0  66.32 -135.16  10.0 4.3 Yukon, Canada
 
 Stations used:
   CN.DAWY CN.INK CN.WHY IU.COLA US.EGAK 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 8.04e+21 dyne-cm
  Mw = 3.87 
  Z  = 12 km
  Plane   Strike  Dip  Rake
   NP1      226    62   112
   NP2        5    35    55
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   8.04e+21     66     175
    N   0.00e+00     19      35
    P  -8.04e+21     14     300

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -5.06e+20
       Mxy     3.14e+21
       Mxz    -3.96e+21
       Myy    -5.68e+21
       Myz     1.91e+21
       Mzz     6.19e+21
                                                     
                                                     
                                                     
                                                     
                     -----------###                  
                 ------------------####              
              ----------------------######           
             ------------------------#-----          
           ----------------------######------        
          -   ---------------###########------       
         -- P -------------#############-------      
        ---   -----------################-------     
        ---------------##################-------     
       --------------#####################-------    
       ------------#######################-------    
       -----------########################-------    
       ----------########################--------    
        --------###########   ###########-------     
        -------############ T ##########--------     
         -----#############   ##########-------      
          ----#########################-------       
           --#########################-------        
             ########################------          
              #####################-------           
                 ################------              
                     #########-----                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  6.19e+21  -3.96e+21  -1.91e+21 
 -3.96e+21  -5.06e+20  -3.14e+21 
 -1.91e+21  -3.14e+21  -5.68e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090528135730/index.html

Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090528135733/index.html

Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090528135733/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   145    55   -50   3.59 0.4853
WVFGRD96    1.0   140    50   -55   3.63 0.5019
WVFGRD96    2.0   135    45   -60   3.74 0.4848
WVFGRD96    3.0   325    75   -55   3.73 0.4400
WVFGRD96    4.0   235    40    -5   3.70 0.4541
WVFGRD96    5.0     0    20    45   3.85 0.4846
WVFGRD96    6.0     5    25    55   3.85 0.5156
WVFGRD96    7.0     5    25    55   3.85 0.5413
WVFGRD96    8.0     5    30    50   3.83 0.5584
WVFGRD96    9.0    10    30    60   3.84 0.5715
WVFGRD96   10.0    10    30    60   3.87 0.5735
WVFGRD96   11.0     5    30    55   3.88 0.5791
WVFGRD96   12.0     5    35    55   3.87 0.5800
WVFGRD96   13.0     5    35    55   3.88 0.5772
WVFGRD96   14.0     5    35    55   3.88 0.5708
WVFGRD96   15.0   315    60   -60   3.80 0.5639
WVFGRD96   16.0   315    60   -60   3.81 0.5551
WVFGRD96   17.0    85    30    60   3.79 0.5427
WVFGRD96   18.0    85    30    60   3.80 0.5331
WVFGRD96   19.0    85    30    60   3.81 0.5221
WVFGRD96   20.0    85    30    60   3.84 0.5124
WVFGRD96   21.0    80    30    55   3.85 0.4990
WVFGRD96   22.0    80    30    55   3.85 0.4840
WVFGRD96   23.0    80    30    50   3.86 0.4680
WVFGRD96   24.0    85    30    60   3.87 0.4521
WVFGRD96   25.0    85    30    60   3.87 0.4355
WVFGRD96   26.0    80    35    45   3.88 0.4183
WVFGRD96   27.0    85    35    50   3.88 0.4018
WVFGRD96   28.0    85    35    50   3.89 0.3853
WVFGRD96   29.0    85    35    50   3.89 0.3693

The best solution is

WVFGRD96   12.0     5    35    55   3.87 0.5800

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The CUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
CUS Model with Q from simple gamma values
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
  H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC)   QP   QS  ETAP  ETAS  FREFP  FREFS
  1.0000  5.0000  2.8900  2.5000 0.172E-02 0.387E-02 0.00  0.00  1.00  1.00 
  9.0000  6.1000  3.5200  2.7300 0.160E-02 0.363E-02 0.00  0.00  1.00  1.00 
 10.0000  6.4000  3.7000  2.8200 0.149E-02 0.336E-02 0.00  0.00  1.00  1.00 
 20.0000  6.7000  3.8700  2.9020 0.000E-04 0.000E-04 0.00  0.00  1.00  1.00 
  0.0000  8.1500  4.7000  3.3640 0.194E-02 0.431E-02 0.00  0.00  1.00  1.00 

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Mon Jun 1 19:00:40 CDT 2009

Last Changed 2009/05/28